首页 | 本学科首页   官方微博 | 高级检索  
检索        


Adaptation changes the spatial frequency tuning of adult cat visual cortex neurons
Authors:M Bouchard  P-C Gillet  S Shumikhina  S Molotchnikoff
Institution:(1) Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-ville, H3C 3J7 Montréal, QC, Canada
Abstract:The modular layout of striate cortex is arguably a hallmark of all cortical organization. Neurons of a given module or domain respond optimally to very few specific properties, such as orientation or direction. However, it is possible, under appropriate conditions, to compel a neuron to respond preferentially to a different optimal property. In anesthetized cats, prepared for electrophysiological recordings in the visual cortex, we applied a spatial frequency (SF) that differs (by 0.25–3.0 octaves) from the optimal one for 7–13 min without interruption. This application shifted the tuning curve of the cell mainly in the direction of the imposed SF. Indeed, results indicate an attractive push occurring more frequently (50%) than a repulsive (30%) shift in cortical cells. The increase of responsivity is band-limited and is around the imposed SF, while flanked responses remained unmodified in all conditions. We hypothesize that the observed reversible plasticity is obtained by a modulation of the balance between the strengths of the respective synaptic inputs. These changes in preferred original optimal spatial frequencies may allow a dynamic reaction of cortex to a new environment and particularly to ‘‘zoom’’ cellular activity toward persistent stimuli in spite of the tuning inherited from genetic programming of response properties and environmental conditions during critical periods in new born animals.
Keywords:Visual cortex  Short term plasticity  Spatial frequency tuning  Vision
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号