首页 | 本学科首页   官方微博 | 高级检索  
检索        


Baseline [18F]-FDOPA kinetics are predictive of haloperidol-induced changes in dopamine turnover and cognitive performance: A positron emission tomography study in healthy subjects
Authors:Vernaleken Ingo  Kumakura Yoshitaka  Buchholz Hans-Georg  Siessmeier Thomas  Hilgers Ralf-Dieter  Bartenstein Peter  Cumming Paul  Gründer Gerhard
Institution:Department of Psychiatry and Psychotherapy, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany. ivernaleken@ukaachen.de
Abstract:The telencephalic dopamine innervations contribute to the modulation of cognitive processing. However, the relationship between cognitive effects of D(2/3)-receptor antagonism and dopamine transmission is not described in healthy subjects. We therefore tested effects of acute haloperidol (5 mg/d over 3 days) on continuous performance task (CPT) performance and 6-(18)F]-fluoro-l-DOPA (FDOPA) PET parameters. Nine physically and mentally healthy male men performed two FDOPA-PET scans including arterial plasma withdrawal. Over 3 days before the second scan, all subjects were treated with 5 mg/d haloperidol orally. Using our novel steady-state analysis, we calculated the intrinsic rate of the cerebral FDOPA utilization (K), the turnover of (18)F]fluorodopamine formed in brain (k(loss)) and the storage for FDOPA and its brain metabolites (V(d)). Furthermore, a ds-CPT and EPS-screening was performed before every PET scan. We found that FDOPA kinetics in those normal subjects with relatively high baseline K showed a more pronounced sensitivity to haloperidol treatment, manifesting in reduced storage capacity and elevated turnover of (18)F]fluorodopamine, whereas subjects with lower K showed the opposite pattern of responses. Furthermore, low baseline K predicted improvements in the CPT task after haloperidol, whereas participants with higher baseline K showed a decline in cognitive performance. We conclude that the initial increase of (18)F]fluorodopamine turnover after acute haloperidol challenge is associated with an over-stimulation in individuals with initially more pharmacologically responsive dopamine systems, but optimizes cognitive performance in those with lower normal FDOPA utilization at baseline. We hypothesize that these effects may be driven by D(1)-receptor mediated transmission during D(2) blockade.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号