首页 | 本学科首页   官方微博 | 高级检索  
     


A network pharmacology-based strategy for predicting anti-inflammatory targets of ephedra in treating asthma
Affiliation:1. The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China;2. Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China;3. Shenzhen shi Futian Qu Chinese Hospital, China
Abstract:Asthma, the most common chronic respiratory disease in the world, is involved in a sustained inflammatory response caused by a variety of immune cells. Ephedra with multi-target, multi-pathway functions is an effective treatment for asthma. However, the ingredients and anti-inflammatory targets of ephedra in treating asthma are unclear. Therefore, there is a need for further research. Ephedra-related and anti-inflammatory targets were found and then combined to get intersection, which represented potential anti-inflammatory targets of ephedra. Moreover, compound-anti-inflammatory target and asthma-target protein-protein interaction network were merged to get the protein-protein interaction network intersection and core genes in asthma-target protein-protein interaction network. For the anti-inflammatory targets of ephedra in treating asthma, Gene Ontology and pathway analysis were executed to confirm gene functions of ephedra in antagonizing inflammation of asthma. Finally, molecular docking, qRT-PCR, WB and ELISA were performed to assess the binding activities between the compounds and anti-inflammatory targets of ephedra in treating asthma. Critical compounds and anti-inflammatory targets of ephedra in treating asthma were identified, including quercetin, luteolin, kempferol, naringenin, beta-sitosterol, SELE, IL-2 and CXCL10. The biological processes of anti-inflammatory targets of ephedra in treating asthma were involved in immune response, inflammatory response, cell-cell signaling and response to lipopolysaccharide. Moreover, 22 pathways were obtained and we proved that critical compounds inhabited the expression of SELE, IL-2 and CXCL10 at mRNA and protein levels.
Keywords:Ephedra  Asthma  Network pharmacology  Inflammation  Mechanism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号