首页 | 本学科首页   官方微博 | 高级检索  
     


Measurements of Thermal Conductivity of LWC Cement Composites Using Simplified Laboratory Scale Method
Authors:Marzena Kurpiń  ska,Jarosł  aw Karwacki,Artur Maurin,Marek Kin
Affiliation:1.Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 st., 80-233 Gdansk, Poland;2.Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14 st., 80-231 Gdańsk, Poland;3.Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Hydropower Department, Fiszera 14 st., 80-231 Gdańsk, Poland;
Abstract:The implementation of low-energy construction includes aspects related to technological and material research regarding thermal insulation. New solutions are sought, firstly, to reduce heat losses and, secondly, to improve the environment conditions in isolated rooms. The effective heat resistance of insulating materials is inversely proportional to temperature and humidity. Cement composites filled with lightweight artificial aggregates may be a suitable material. Selecting a proper method for measuring the thermal conductivity of concrete is important to achieve accurate values for calculating the energy consumption of buildings. The steady state and transient methods are considered the two main thermal conductivity measurement approaches. Steady state is a constant heat transfer, whereby the temperature or heat flow is time independent. In the transient method, temperature changes over time. Most researchers have measured the conductivity of cement-based materials based on transient methods. The availability and cost of equipment, time for experimental measurements and measurement ability for moist specimens may be some of the reasons for using this method. However, considering the accuracy of the measurements, the steady state methods are more reliable, especially for testing dry materials. Four types of composites were investigated that differed in filler: natural aggregate, sintered fly ash filler, sintered clay and granular foam glass aggregate. The method of preparing the samples for testing is especially important for the obtained results. The samples, with a specific surface roughness, will show a lower coefficient of thermal conductivity by 20–30%; therefore, the selection of the type of contact layer between the plate of the measuring device and the sample is of particular importance.
Keywords:thermal conductivity   measuring   simple laboratory   cement   lightweight aggregate   insulation   granulated ash aggregate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号