首页 | 本学科首页   官方微博 | 高级检索  
检索        


Colonic In Vitro Model Assessment of the Prebiotic Potential of Bread Fortified with Polyphenols Rich Olive Fiber
Authors:Lorenzo Nissen  Flavia Casciano  Elena Chiarello  Mattia Di Nunzio  Alessandra Bordoni  Andrea Gianotti
Institution:1.CIRI-Interdepartmental Centre of Agri-Food Industrial Research, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (M.D.N.); (A.B.); (A.G.);2.DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Piazza G. Goidanich, 60, 47521 Cesena (FC), Italy; (F.C.); (E.C.)
Abstract:The use of olive pomace could represent an innovative and low-cost strategy to formulate healthier and value-added foods, and bakery products are good candidates for enrichment. In this work, we explored the prebiotic potential of bread enriched with Polyphenol Rich Fiber (PRF), a defatted olive pomace byproduct previously studied in the European Project H2020 EcoProlive. To this aim, after in vitro digestion, the PRF-enriched bread, its standard control, and fructo-oligosaccharides (FOS) underwent distal colonic fermentation using the in vitro colon model MICODE (multi-unit colon gut model). Sampling was done prior, over and after 24 h of fermentation, then metabolomic analysis by Solid Phase Micro Extraction Gas Chromatography Mass Spectrometry (SPME GCMS), 16S-rDNA genomic sequencing of colonic microbiota by MiSeq, and absolute quantification of main bacterial species by qPCR were performed. The results indicated that PRF-enriched bread generated positive effects on the host gut model: (i) surge in eubiosis; (ii) increased abundance of beneficial bacterial groups, such as Bifidobacteriaceae and Lactobacillales; (iii) production of certain bioactive metabolites, such as low organic fatty acids; (iv) reduction in detrimental compounds, such as skatole. Our study not only evidenced the prebiotic role of PRF-enriched bread, thereby paving the road for further use of olive by-products, but also highlighted the potential of the in vitro gut model MICODE in the critical evaluation of functionality of food prototypes as modulators of the gut microbiota.
Keywords:FOS  MICODE  microbiota  olive byproduct  prebiotic  VOCs  qPCR  16S-rDNA MiSeq
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号