首页 | 本学科首页   官方微博 | 高级检索  
     


Human adipose tissue glucose uptake determined using [18F]-fluoro-deoxy-glucose ([18F]FDG) and PET in combination with microdialysis
Authors:K. A. Virtanen  P. Peltoniemi  P. Marjamäki  M. Asola  L. Strindberg  R. Parkkola  R. Huupponen  J. Knuuti  P. Lönnroth  P. Nuutila
Affiliation:(1) Turku PET Centre, University of Turku, Turku, Finland, FI;(2) Department of Internal Medicine, Turku University Central Hospital, Turku, Finland, FI;(3) Department of Internal Medicine, University of Gothenburg, Gothenburg, Sweden, SE;(4) Department of Pharmacology and Clinical Pharmacology, University of Turku, Turku, Finland, FI;(5) Department of Radiology, Turku University Central Hospital, Turku, Finland, FI
Abstract:Aims/hypothesis: To determine the lumped constant (LC), which accounts for the differences in the transport and phosphorylation between [18F]-2-fluoro-2-deoxy-d-glucose ([18F]FDG) and glucose, for [18F]FDG in human adipose tissue. Methods: [18F]FDG-PET was combined with microdialysis. Seven non-obese (29 ± 2 years of age, BMI 24 ± 1 kg/m2) and seven obese (age 32 ± 2 years of age, BMI 31 ± 1 kg/m2) men were studied during euglycaemic hyperinsulinaemia (1 mU/kg · min–1 for 130 min). Abdominal adipose tissue [18F]FDG uptake (rGUFDG) and femoral muscle glucose uptake were measured using [18F]FDG-PET. Adipose tissue perfusion was measured using [15O]-labelled water and PET, and interstitial glucose concentration using microdialysis. Glucose uptake (by microdialysis, rGUMD) was calculated by multiplying glucose extraction by regional blood flow. The LC was determined as the ratio of rGUFDG to rGUMD. Results: Rates of adipose tissue glucose uptake (rGUMD) were 36 % higher in the non-obese than in the obese patients (11.8 ± 1.7 vs 7.6 ± 0.8 μmol/kg · min–1, p < 0.05, respectively) and a correlation between rGUMD and rGUFDG was found (r = 0.82, p < 0.01). The LC averaged 1.14 ± 0.11, being similar in the obese and the non-obese subjects (1.01 ± 0.15 vs 1.26 ± 0.15, respectively, NS). Muscle glucose uptake was fourfold to fivefold higher than adipose tissue glucose uptake in both groups. Conclusion/interpretation: [18F]FDG-PET seems a feasible tool to investigate adipose tissue glucose metabolism in human beings. Direct measurements with [18F]FDG-PET and microdialysis suggest a LC value of 1.14 for [18F]FDG in human adipose tissue during insulin stimulation and the LC does not appear to be altered in insulin resistance. Furthermore, the obese patients show insulin resistance in both adipose tissue and skeletal muscle. [Diabetologia (2001) 44: 2171–2179] Received: 10 May 2001 and in revised form: 29 August 2001
Keywords:Adipose tissue  glucose  insulin  [18F]FDG  PET  microdialysis  skeletal muscle  obesity.
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号