首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据挖掘获取肺癌放射治疗计划靶区外放边界
引用本文:张隆彬,骆小青,苏立发,王伟,黄小平,刘强. 基于数据挖掘获取肺癌放射治疗计划靶区外放边界[J]. 中国医学影像技术, 2023, 39(6): 895-898
作者姓名:张隆彬  骆小青  苏立发  王伟  黄小平  刘强
作者单位:重庆大学附属三峡医院肿瘤中心, 重庆 404100;电子科技大学生命与科学技术学院, 四川 成都 610000
摘    要:目的 基于数据挖掘获取对肺癌进行放射治疗时,针对不同体质量指数(BMI)及治疗等中心点患者的个体化计划靶区外放边界(MPTV)。方法 回顾性413例接受放射治疗的肺癌患者,分析锥形束CT(CBCT)图像引导放射治疗(IGRT)肺癌疗次间的摆位误差,并进行数据挖掘,计算群体系统误差、随机误差,获取不同BMI及不同治疗等中心点肺癌患者的个体化MPTV。结果 不同BMI患者IGRT不同疗次间x轴方向上的摆位误差差异有统计学意义(P<0.05);不同治疗等中心点患者IGRT不同疗次间x、z轴上的摆位误差差异有统计学意义(P均<0.05)。基于数据挖掘成功获取不同BMI及治疗等中心点肺癌患者放射治疗的个体化MPTV和具体参考值。结论 基于数据挖掘可成功获取放射治疗中对于不同BMI及治疗等中心点肺癌患者的个体化MPTV。

关 键 词:肺肿瘤  放射治疗计划,计算机辅助  外放边界
收稿时间:2022-12-20
修稿时间:2023-04-22

Obtaining margins of planning target volume in radiotherapy of lung cancer through data mining
ZHANG Longbin,LUO Xiaoqing,SU Lif,WANG Wei,HUANG Xiaoping,LIU Qiang. Obtaining margins of planning target volume in radiotherapy of lung cancer through data mining[J]. Chinese Journal of Medical Imaging Technology, 2023, 39(6): 895-898
Authors:ZHANG Longbin  LUO Xiaoqing  SU Lif  WANG Wei  HUANG Xiaoping  LIU Qiang
Affiliation:Cancer Center, Chongqing University Three Gorges Hospital, Chongqing 404100, China;School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610000, China
Abstract:Objective To obtain the individualized margins of planning target volume (MPTV) in radiotherapy of lung cancer in patients categorized by different body mass index (BMI) and treatment isocenters based on data mining. Methods Totally 413 lung cancer patients who completed image-guided radiation therapy (IGRT) through cone beam CT (CBCT) were enrolled. The inter-fractional setup errors were explored, and data mining was performed to calculate the group systematic errors and random errors, and to obtain individualized MPTV of patients with different BMI and different treatment isocenters. Results IGRT inter-fractional setup errors of different BMI patients were significantly different in the x axis (P<0.05), while IGRT inter-fractional setup errors of different treatment isocenters were significantly different in the x and z axis (both P<0.05). Individualized MPTV of IGRT for lung cancer patients with different BMI and treatment isocenters were obtained based on data mining, with specific reference values. Conclusion Individualized MPTV of IGRT in radiotherapy of lung cancer in patients with different BMI and treatment isocenters could be successfully obtained based on data mining.
Keywords:lung neoplasms  radiotherapy planning, computer-assisted  margin of planning target volume
点击此处可从《中国医学影像技术》浏览原始摘要信息
点击此处可从《中国医学影像技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号