首页 | 本学科首页   官方微博 | 高级检索  
     


Latency of changes in spinal motoneuron excitability evoked by transcranial magnetic brain stimulation in spinal cord injured individuals
Affiliation:The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1600 NW 10th Avenue, R-48, Miami, FL, 33136, USA
Abstract:Objectives: To examine the basis for delay in the excitatory effects of transcranial magnetic stimulation (TMS) of motor cortex on motoneuron pools of muscles left partially-paralyzed by traumatic spinal cord injury (SCI).Methods: The effect of subthreshold transcranial magnetic stimulation (TMS) on just-suprathreshold H-reflex amplitude was examined in subjects (n=10) with incomplete cervical SCI, and in able-bodied (AB) subjects (n=20) for comparison. EMG activity was recorded from the soleus and the abductor hallucis muscles, and H-reflex was elicited by stimulation of the tibial nerve behind the knee. Comparison of the peak-to-peak amplitude of the TMS-conditioned H-reflex to that of the H-reflex alone (i.e. unconditioned H-reflex) was made for different conditioning-test intervals with multivariate analysis of variance and (when called for) t testing.Results: The absolute latencies of motor responses to suprathreshold TMS delivered during a weak voluntary contraction of the soleus and abductor hallucis were significantly prolonged in the SCI group relative to AB subjects. For the TMS-conditioned H-reflex, the time-course effect of TMS on the H-reflex amplitude in different AB subjects included an early effect (typically facilitation, but occasionally inhibition) seen between −5 and 0 ms, followed by a later period (i.e. >5 ms) of H-reflex facilitation. In contrast, the earliest indication of a TMS effect on H-reflex excitability in SCI subjects was between 5 and 10 ms after TMS. This difference between SCI and AB subjects of approximately 10 ms was similar to the prolongation of TMS-evoked response latencies in the soleus and the abductor hallucis muscles of the SCI subjects.Conclusions: The results suggest that motor conduction slowing after traumatic SCI most likely occurs across the population of the descending tract axons mediating the TMS-evoked motor responses.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号