首页 | 本学科首页   官方微博 | 高级检索  
检索        


Balancing the spatial demands of the developing dentition with the mechanical demands of the catarrhine mandibular symphysis
Authors:Cobb Samuel N  Panagiotopoulou Olga
Institution:Functional Morphology and Evolution Unit, Hull York Medical School, University of Hull, Hull, UK. sam.cobb@hyms.ac.uk
Abstract:The superior transverse torus of the catarrhine mandible has been shown to effectively reduce bending at the symphysis during unilateral postcanine biting. While the adult superior transverse torus contains trabecular bone, the juvenile one is almost entirely filled by developing permanent incisors until their eruption. This study uses finite elements analysis (FEA) to investigate whether the presence of developing incisors in the juvenile symphysis increases strains on the superior transverse torus. Two FE models of a juvenile Macaca fascicularis mandible were created: one included all the developing teeth; the second was modified to remove the incisor tooth crypts by filling them with trabecular bone. The models were loaded identically to simulate static physiological unilateral biting on dp(4) and strain magnitudes, patterns and distributions of the two FE models were compared. The FEA results show a notable increase in strain magnitudes by up to 40% when the developing incisors are present. The results indicate that, in order to maintain the same symphyseal strain magnitudes during chewing, the presence of the incisors in the symphysis necessitates a larger superior transverse torus in the juvenile than would be required if the superior transverse torus did not house the developing incisors. These results highlight the adaptational balance of the symphyseal morphology throughout ontogeny between biomechanics and the spatial demands of the developing dentition. Based on the findings we therefore propose that the spatial requirements of the developing incisors during ontogeny can act as a constraint on the functional adaptation and subsequent adult morphology observed in the catarrhine mandibular symphysis.
Keywords:biomechanics  feeding  finite elements analysis  function  Macaca  ontogeny  strain
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号