首页 | 本学科首页   官方微博 | 高级检索  
检索        


Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods
Authors:Canavan Heather E  Cheng Xuanhong  Graham Daniel J  Ratner Buddy D  Castner David G
Institution:National ESCA and Surface Analysis Center for Biomedical Problems, Box 351750, University of Washington, Seattle, WA, USA.
Abstract:This work compares the removal of bovine aortic endothelial cell (BAEC) monolayers via 1) low-temperature liftoff from a "smart polymer," plasma polymerized poly(N-isopropyl acrylamide) (ppNIPAM), 2) enzymatic digestion, and 3) mechanical dissociation from ppNIPAM surfaces. We examine the surfaces after cell removal by using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), immunostaining, and cell adhesion assay. Immunoassay results indicate that low-temperature liftoff nondestructively harvests the cell sheet and most of the underlying extracellular matrix (ECM), whereas enzymatic digestion and mechanical dissociation are damaging to both the cells and ECM. XPS results indicate that amide and alcohol groups attributed to proteins in the ECM are present on postliftoff surfaces. Principal component analysis (PCA) of ToF-SIMS data indicates that molecular ion fragments of amino acids are present on postliftoff surfaces. Finally, a cell adhesion assay seeding new cells on surfaces from which an initial layer of cells was removed via each of the three methods indicates that liftoff and mechanical dissociation leave behind surfaces that better promote cell adhesion. We conclude that the removal of BAEC cells via low-temperature liftoff from ppNIPAM-treated surfaces is less damaging to the ECM proteins remaining at the surface than the other methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号