A spectrum of biophysical interaction modes between T cells and different antigen-presenting cells during priming in 3-D collagen and in vivo |
| |
Authors: | Gunzer Matthias Weishaupt Carsten Hillmer Anja Basoglu Yasmin Friedl Peter Dittmar Kurt E Kolanus Waldemar Varga Georg Grabbe Stephan |
| |
Affiliation: | German Research Centre for Biotechnology, Junior Research Group Immunodynamics, Mascheroder Weg 1, 38124 Braunschweig, Germany. mgunzer@gbf.de |
| |
Abstract: | For activation T cells engage antigen-presenting cells (APCs) in lymphatic tissues. The contact duration and kinetics (static versus dynamic) vary considerably in different model systems; however, it is unclear whether T cells, APCs, or the environment are responsible for the observed discrepancies. Using 3-D collagen matrices as structural scaffold, we directly compared the kinetics of T-cell engagement and activation by functionally major APC types, ie, dendritic cells (DCs) and resting or activated B cells. Resting B cells engaged T cells in long-lived (several hours), adhesive, and leukocyte function-associated antigen-1 (LFA-1)-dependent conjugates in 3-D collagen as well as in intact lymph nodes in vivo. DCs and preactivated B cells, however, supported predominantly dynamic, short-lived (minutes), and sequential contacts to T cells that were dependent on high cytoskeletal activity of the APCs but could not be inhibited by anti-LFA-1 treatment. Naive T cells were most strongly activated by DCs and activated B cells, whereas resting B cells were 100-fold less efficient to induce T-cell proliferation. Thus, in the same 3-D environment, naive T cells respond with a spectrum of different interaction modes dependent on the type and activation state of the APCs. Thereby, more dynamic interaction kinetics is positively correlated with higher T-cell priming efficiency. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《Blood》浏览原始摘要信息 |
|
点击此处可从《Blood》下载免费的PDF全文 |
|