首页 | 本学科首页   官方微博 | 高级检索  
     


Development and applications of photo-triggered theranostic agents
Authors:Prakash Rai  Xiang Zheng  Youssef Mir  Ahmat Khurshid  Tayyaba Hasan
Affiliation:
  • a Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
  • b Harvard Science and Technology, Harvard MIT, Boston MA, 02114, United States
  • c Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, PO Box 45650, Nilore, Islamabad, Pakistan
  • Abstract:Theranostics, the fusion of therapy and diagnostics for optimizing efficacy and safety of therapeutic regimes, is a growing field that is paving the way towards the goal of personalized medicine for the benefit of patients. The use of light as a remote-activation mechanism for drug delivery has received increased attention due to its advantages in highly specific spatial and temporal control of compound release. Photo-triggered theranostic constructs could facilitate an entirely new category of clinical solutions which permit early recognition of the disease by enhancing contrast in various imaging modalities followed by the tailored guidance of therapy. Finally, such theranostic agents could aid imaging modalities in monitoring response to therapy. This article reviews recent developments in the use of light-triggered theranostic agents for simultaneous imaging and photoactivation of therapeutic agents. Specifically, we discuss recent developments in the use of theranostic agents for photodynamic-, photothermal- or photo-triggered chemotherapy for several diseases.
    Keywords:3-(PhS)4-PcAlOH, hydroxyaluminium tetra-3-phenylthiophthalocyanine   Ag, silver   ALA, 5-aminolevulinic acid   AlPcS4, phthalocyanine tetrasulfonate   Au, gold   BDP-MA, benzoporphyrin derivative monoacid ring A   BLM, bleomycin   C11Pc, Zn(II)-phthalocyanine disulphide   C60, fullerene   CdSe, cadmium selenide   CE, contrast-enhanced   CNT, carbon nanotubes   CPT, camptothecin   CR, complete regression   CT, computed tomography   CVD, cardiovascular disease   Dac, daclizumab   DDS, drug delivery system   DMNB, dimethoxy-2-nitrobenzyl   DO3A, 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid   DOX, doxorubicin   DPBF, 1,3-diphenylisobenzofuran   DTPA, diethylenetriaminepentaacetic acid   E. coli, Escherichia coli   EGFR, epidermal growth factor receptor   EPR, enhanced permeability and retention   Er3+, erbium   Eu, europium   FDA, food and drug administration   Fe3O4, iron oxide   FITC, (fluorescein 5(6)-isothiocyanate)   FR, folate receptor   FRET, fluorescence resonance energy transfer   EtNBS, carboxybutylamino diethylaminobenzo phenothiazinium   GLUT, glucose transporter   Gd, gadolinium   GNP, gold nanoparticle   GNT, gold coated carbon nanotube   GNR, gold nanorod   HA, hyaluronic acid   HAuNS, hollow gold nanosphere   HGN, hollow gold nanoshell   HFF-1, human foreskin fibroblasts   HP, hematoporphyrin   HPPH, pyropheophorbide-alpha-hexyl-ether   HSA, human serum albumin   i.c., intracranial   ICG, indocyanine green   i.p., intra peritoneal   IR, infra red   i.v., intra venous   LAMS, light-activated mesostructured silica   LbL, layer-by-layer   L-BPD, liposomal benzoporphyrin derivative monoacid ring A   LCST, lower critical solution temperature   β-LEAP, β-lactamase enzyme-activated photosensitizer   LDL, low-density lipoprotein   LDLR, LDL receptors   Lip-NP, liposome-nanoparticle assembly   LMB, leuko methylene blue   Ln, lanthanides   MB, methylene blue   Mce6, mesochlorin e6   MDR, multi drug resistance   MFNP, magnetofluorescent nano particle   MRI, magnetic resonance imaging   MRSA, methicillin-resistant Staphylococcus aureus   MSNP, mesoporous silica nanoparticle   MTCNPs, magnetic targeting chitosan NPs   MTCP, meso-tetra(4-carboxyphenyl) porphine   mTHPC, meso-tetra(hydroxyphenyl) chlorine   MTT, 3-(4,5-dimethyltiazol-2-yl)-2,5-diphenyltetrazolium bromide   MWNT, multi wall carbon nanotubes   NaYF4, sodium yttrium fluoride   Nc, naphthalocyanine   NIPAAm-co-AAm, N-isopropylacrylamide-co-acrylamide   NIR, near-infrared   NP, nanoparticle   OCT, optical coherence tomography   ORMOSIL, organically modified silica   PA, photoacoustic   PAH, poly(allylamine hydrochloride)   Pan, panitumumab   Pc4, phthalocyanine 4   PCI, photochemical internalization   PDD, photodynamic diagnosis   pDNA, plasmid DNA   PDT, photodynamic therapy   PEG, polyethylene glycol   PEI, poly(ethylene imine)   PET, positron emission tomography   Pheo, pheophorbide   PHPP, 2,7,12,18-tetramethyl-3,8-di-(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl) porphyrin   PI, propidium iodide   PIC, photoimmunoconjugate   PICEL, photoimmunoconjugate encapsulating liposome   PLGA, poly-L-co-glycolic-acid   PS, photosensitizer   PSiNPs, phosphonate-terminated silica nanoparticles   PSS, poly(styrene sulfonate)   PT, photothermal   PTT, photothermal therapy   PTX, paclitaxel   pz, porphyrazine   QD, quantum dots   rGel, gelonin toxin   RA, rheumatoid arthritis   ROS, reactive oxygen species   SDS, sodium dodecyl sulfate   SDT, sonodynamic therapy   SiNcBOA, silicon naphthalocyanine bisoleate   SiO2, silica   siRNA, small interfering RNA   SLN, solid lipid nanoparticles   S. aureus, Staphylococcus aureus   SWNTS, single wall carbon nanotubes   TEOS, tetraEthOxy silane   Tf-Lip, transferring-conjugated liposomes   THPMP, tri-hydroxyl silyl propyl methyl phosphonate   TPC, 5-(4-carboxyphenyl)-10,15,20-triphenyl-2,3-dihydroxychlorin   TPPS2A, disulfonated meso-tetraphenylporphine   Tra, trastuzumab   UV, ultraviolet   VIS, visible light   Yb3+, ytterbium   ZnPC, zinc phthalocyanine
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号