首页 | 本学科首页   官方微博 | 高级检索  
     


Spontaneous synaptic activities in rat nucleus tractus solitarius neurons in vitro: evidence for re-excitatory processing
Authors:Gilles Fortin  Jean Champagnat
Affiliation:

aBiologie fonctionnelle du neurone, Institut Alfred Fessard, CNRS, 91198 Gif sur Yvette, France

Abstract:The pattern of synaptic interactions between neurons of the nucleus tractus solitarius (NTS) has been analyzed using whole cell recording in rat brainstem slices. Following tractus solitarius (TS) stimulation 15/55 neurons presented a prolonged (up to 300 ms) increased excitability (PIE neurons) and 40/55 neurons presented a prolonged (up to 200 ms) reduced excitability (PRE neurons). In the absence of afferent sensory input all neurons showed spontaneous synaptic activity. Onggoing synaptic activity in PIE cells was glutamatergic and characterized by the absence of detectable inhibitory potentials while in PRE cells it was 90% GABAergic and 10% glutamatergic. Glutaminergic synaptic currents in PIE cells and GABAergic synaptic currents in PRE were studied using probability density and intensity functions. Distribution of time intervals between synaptic events indicated the latter were generated, in both PIE and PRE cells, by two simultaneous processes: (1) a close to Poisson process generating independent events; and (2) a subsidiary re-excitatory process generating synaptic events separated by intervals shorter than 20 ms. Blockade of glutamatergic transmission by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 μM) or blockade of action potentials by tetrodotoxin (TTX; 1 μM) suppressed the subsidiary process. In conclusion, we propose that PIE cells (1) form a re-excitatory network contributing to generation of excitatory activity in the NTS and (2) are located presynaptically with respect to PRE cells.
Keywords:Whole-cell patch clamp   Synaptic activity   Re-excitation   Nucleus tractus solitarius   Excitatory amino acid   Brainstem neuronal networks
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号