首页 | 本学科首页   官方微博 | 高级检索  
检索        


The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications
Authors:Millon L E  Wan W K
Institution:Graduate Program in Biomedical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada.
Abstract:Finding materials suitable for soft tissue replacement is an important aspect for medical devices design and fabrication. There is a need to develop a material that will not only display similar mechanical properties as the tissue it is replacing, but also shows improved life span, biocompatibility, nonthrombogenic, and low degree of calcification. Polyvinyl alcohol (PVA) is a hydrophilic biocompatible polymer with various characteristics desired for biomedical applications. PVA can be transformed into a solid hydrogel with good mechanical properties by physical crosslinking, using freeze-thaw cycles. Hydrophilic bacterial cellulose (BC) fibers of an average diameter of 50 nm are produced by the bacterium Acetobacter xylinum, using a fermentation process. They are used in combination with PVA to form biocompatible nanocomposites. The resulting nanocomposites possess a broad range of mechanical properties and can be made with mechanical properties similar to that of cardiovascular tissues, such as aorta and heart valve leaflets. The stress-strain properties for porcine aorta are matched by at least one type of PVA-BC nanocomposite in both the circumferential and the axial tissue directions. A PVA-BC nanocomposite with similar properties as heart valve tissue is also developed. Relaxation properties of all samples, which are important for cardiovascular applications, were also studied and found to relax at a faster rate and to a lower residual stress than the tissues they might replace. The new PVA-BC composite is a promising material for cardiovascular soft tissue replacement applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号