首页 | 本学科首页   官方微博 | 高级检索  
检索        


Short-arm (1.9 m) +2.2 Gz acceleration: isotonic exercise load-O2 uptake relationship
Authors:Greenleaf J E  Chou J L  Stad N J  Leftheriotis G P  Arndt N F  Jackson C G  Simonson S R  Barnes P R
Institution:Laboratory for Human Environmental Physiology, Physiology, NASA, Ames Research Center, Moffett Field, CA 94035-1000, USA. jgreenleaf@mail.arc.nasa.gov
Abstract:BACKGROUND: The deconditioning syndrome from prolonged bed rest (BR) or spaceflight includes decreases in maximal oxygen uptake (VO2max), muscular strength and endurance, and orthostatic tolerance. In addition to exercise training as a countermeasure, +Gz (head-to-foot) acceleration training on 1.8-2.0 m centrifuges can ameliorate the orthostatic and acceleration intolerances induced by BR and immersion deconditioning. PURPOSE: Study A was designed to determine the magnitude and linearity of the heart rate (HR) response to human-powered centrifuge (HPC) acceleration with supine exercise vs. passive (no exercise) acceleration. Study B was designed to test the hypothesis that moderate +Gz acceleration during exercise will not affect the respective normal linear relationships between exercise load and VO2max, HR, and pulmonary ventilation (VEBTPS). Study C: To determine if these physiological responses from the HPC runs (exercise + on-platform acceleration) will be similar to those from the exercise + off-platform acceleration responses. METHODS: In Study A, four men and two women (31-62 yr) were tested supine during exercise + acceleration and only passive acceleration at 100% maximal acceleration (rpm) = Amax] and at 25%, 50%, and 75% of Amax. In Studies B and C, seven men (33+/-SD 7 yr) exercised supine on the HPC that has two opposing on-platform exercise stations. A VO2max test and submaximal exercise runs occurred under three conditions: (EX) exercise (on-platform cycle at 42%, 61%, 89% and 100% VO2max) with no acceleration; (HPC) exercise + acceleration via the chain drive at 25%,50%, and 100% Gzmax (35%, 72% and 100% VO2max); and (EXA) exercise (on-platform cycle at 42%, 61%, 89%, and 100% VO2max) with acceleration performed via the off-platform cycle operator at +2.2+/-0.2 Gz 50% of max (rpm) G]. RESULTS: Study A: Mean (+/-SE) Amax was 43.7+/-1.3 rpm (mean = +3.9+/-0.2, range = 3.3 to 4.9 Gz). Amax run time for exercise +acceleration was 50-70 s, and 40-70 s for passive acceleration. Regression of X HR on Gz levels indicated explained variances (r2) of 0.88 (exercise) and 0.96 (passive). The mean exercise HR of 107+/-4 (25%), to 189+/-13 (100%) bpm were 43-50 bpm higher (p < 0.05) than comparable passive HR of 64+/-2 to 142+/-22 bpm, respectively. Study B: There were no significant differences in VO2, HR or VEBTPS at the submaximal or maximal levels between the EX and EXA runs. Mean (+/-SE) VO2max for EX was 2.86+/-0.12 L x min(-1)(35+/-2 ml x min(-1) x kg(-1)) and for EXA was 3.09+/-0.14 L x min(-1) (37+/-2 ml-min(-1) x kg(-1)). Study C: There were no significant differences in the essentially linear relationships between the HPC and EXA data for VO2 (p = 0.45), HR (p < 0.08), VEBTPS (p = 0.28), or the RE (p = 0.15) when the exercise load was % VO2max. CONCLUSION: Addition of + 2.2 Gz acceleration does not significantly influence levels of oxygen uptake, heart rate, or pulmonary ventilation during submaximal or maximal cycle ergometer leg exercise on a short-arm centrifuge.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号