Specific effects of endurance and sprint training on protein expression of calsequestrin and SERCA in mouse skeletal muscle |
| |
Authors: | Sanni Kinnunen Satu M?ntt?ri |
| |
Affiliation: | Department of Biology, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland. sanni.kinnunen@oulu.fi |
| |
Abstract: | Calsequestrin (CSQ) is the main Ca2? binding protein inside the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The present study demonstrates the specific effects of different training regimens on CSQ isoform 1 (CSQ1, the primary isoform) and SR Ca2?-ATPase (SERCA1, 2) expression in various skeletal muscles of mouse. CSQ1, SERCA1, and SERCA2 protein expression was determined with Western blot in m. soleus (SOL), m. extensor digitorum longus (EDL), m. gastrocnemius (GAS), m. rectus femoris (RF), and m. tibialis anterior (TA) muscles after completing a 6-week endurance or sprint training program. Endurance training induced decrease in CSQ1 concentration in SOL (p < 0.001) and in SERCA1 levels in GAS (p < 0.05), whereas increase in CSQ1 expression was detected in EDL (p < 0.01). After sprint training the concentration of CSQ1 increased in GAS (p < 0.01) and EDL (p < 0.01). Additionally, sprint exercise induced an increase in SERCA1 in GAS (p < 0.001) and a decline in TA (p < 0.05). SERCA2 was up-regulated with sprint training in GAS (p < 0.01). Myosin heavy chain (MHC) based fibre type composition altered differently depending on the muscle and the training regimen.These results indicate that (1) diverse training strategies used affect differently CSQ1 and SERCA1 concentrations in the skeletal muscle, (2) the regulation of CSQ1 and SERCA1 does not necessary follow the fast-slow definition despite the correlation between MHC isoforms, and (3) the changes in CSQ1 concentration occur prior to SERCA1 or SERCA2. |
| |
Keywords: | |
本文献已被 PubMed SpringerLink 等数据库收录! |
|