首页 | 本学科首页   官方微博 | 高级检索  
     


Light and electron microscopic study of cholinergic and noradrenergic elements in the basolateral nucleus of the rat amygdala: evidence for interactions between the two systems
Authors:Li R  Nishijo H  Wang Q  Uwano T  Tamura R  Ohtani O  Ono T
Affiliation:Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930-0194, Japan.
Abstract:Pharmacological studies have suggested that the cholinergic (ACh) and noradrenergic (NA) systems in the amygdala (AM) play an important role in learning and memory storage and that the two systems interact to modulate memory storage. To obtain anatomical evidence for the interaction, the organization of the ACh and NA fibers in rat AM was investigated by immunocytochemistry for choline acetyltransferase (ChAT) and dopamine-beta-hydroxylase (DBH) in conjunction with light, confocal laser scanning, and electron microscopy (LM, CLSM, and TEM, respectively). LM showed that the ChAT immunoreactivity was densest in the basolateral nucleus (BL), whereas the DBH immunoreactivity was densest in the posterior BL. CLSM demonstrated that the ChAT-immunoreactive profiles in the BL were frequently located in juxtaposition to the DBH-immunoreactive axons. The TEM observations were as follows: The majority of the synapses formed by ChAT-immunoreactive terminals were symmetric, but DBH-immunoreactive axons formed both asymmetric and symmetric synapses. The ChAT-immunoreactive terminals usually established the symmetric synaptic contacts with the DBH-immunoreactive terminals and varicosities. The DBH-immunoreactive terminals formed the asymmetric synapses with the ChAT-immunoreactive dendrites of the intrinsic neurons within the AM. The results provide anatomical substrates for mnemonic functions of the ACh and NA systems and for the interactions between the two systems in the AM.
Keywords:choline acetyltransferase  dopamine-β-hydroxylase  immunocytochemistry  memory  learning
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号