首页 | 本学科首页   官方微博 | 高级检索  
检索        


Culture of human septal chondrocytes in a rotary bioreactor
Authors:Reuther Marsha S  Wong Van W  Briggs Kristen K  Chang Angela A  Nguyen Quynhhoa T  Schumacher Barbara L  Masuda Koichi  Sah Robert L  Watson Deborah
Institution:Division of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, California, USA.
Abstract:Objectives (1) To show that extracellular matrix deposition in 3-dimensional culture of human septal chondrocytes cultured in a rotary bioreactor is comparable to the deposition achieved under static culture conditions. (2) To demonstrate that the biomechanical properties of human septal chondrocytes cultured in a bioreactor are enhanced with time and are analogous to beads cultured under static culture. Study Design Prospective, basic science. Setting Research laboratory. Methods Human septal chondrocytes from 9 donors were expanded in monolayer and seeded in alginate beads. The beads were cultured in a rotary bioreactor for 21 days in media supplemented with growth factors and human serum, using static culture as the control. Biochemical and biomechanical properties of the beads were measured. Results Glycosaminoglycan (GAG) accumulation significantly increased during 2 measured time intervals, 0 to 21 days and 10 to 21 days (P < .01). No significant difference was seen between the static and bioreactor conditions. Substantial type II collagen production was demonstrated in the beads terminated at day 21 of culture in both conditions. In addition, the biomechanical properties of the beads were significantly improved at 21 days in comparison to beads from day 0. Conclusion Human septal chondrocytes cultured in alginate beads exhibit significant matrix deposition and improved biomechanical properties after 21 days. Alginate bead diameter and stiffness positively correlated with GAG and type II collagen accretion. Matrix production in beads is supported by the use of a rotary bioreactor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号