首页 | 本学科首页   官方微博 | 高级检索  
检索        

Effect of Radix Paeoniae Rubra on the expression of HO-1 and iHOS in rats with endotoxin-induced acute lung injury
作者姓名:詹丽英  夏中元  陈畅  王晓圆
作者单位:Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan 430060, China
摘    要:Objective : To investigate the effect of Radix Paeoniae Rubra (RPR) on the expression of heme oxygenase ( HO- 1 ) and induced nitric oxide synthase ( iNOS ) in endotoxin- induced acute lung injury in rats and its protective mechanism. Methods: Forty Wistar rats were divided randomly into 5 groups with 8 rats in each group: saline control group (NS group ), lipopolysaccharide group (LPS group), RPR-treatment group, RPR-prevention group and Hemin group. The effect of RPR on protein content, the ratio of neutrophiles in bronchoalveolar lavage fluid, malondialdehyde (MDA) content in the lung and the activity of serum NO were observed. Arterial blood was drawn for blood-gas analysis. The expression of HO-1 and iNOS in lung tissues was detected by immunohistochemitry and morphometry computer image analysis. The histological changes of the lung were observed under fight microscope. Results: Compared with that in NS group, the expression of HO-1 and iNOS was markedly increased in LPS group (P 〈0.01). In RPR-treatment, RPR-prevention, and Hemin groups, the expression of iNOS was significantly lower, while the expression of HO-1 was higher than that in LPS group (P〈0.05). The protein content, the ratio of neutrophiles in bronchouiveolar lavage fluid, the content of MDA and the activity of serum NO in LPS group were significantly higher than those in NS group ( P〈0.01 ). There was a significant decrease in the level of arterial bicarbonate and partial pressure of oxygen in the LPS group (P 〈0.01); these parameters of lung injury however, were significantly lower in RPR-treatment, RPR- prevention, and Heroin groups than LPS group (P〈0.05 or P〈0.01 ). The pathologic changes of lung tissues were substantially attenuated in RPR-treatment, RPR- prevention, and Hemin groups than LPS group. Conclusions : The high expression of HO-1 reflects an important protective function of the body during lipopolysaccharide-induced acute lung injury. The acute lung injury is related to the inhibition of iNOS expression and the induction of HO-1 expression.

关 键 词:内毒素  急性肺损伤  病理机制  临床
收稿时间:2005-05-31

Effect of Radix Paeoniae Rubra on the expression of HO-1 and iHOS in rats with endotoxin-induced acute lung injury
Zhan LiYing;Xia ZhongYuan;Chen Chang;Wang XiaoYuan.Effect of Radix Paeoniae Rubra on the expression of HO-1 and iHOS in rats with endotoxin-induced acute lung injury[J].Chinese Journal of Traumatology(English Edition),2006,9(3):181-186.
Authors:Zhan LiYing;Xia ZhongYuan;Chen Chang;Wang XiaoYuan
Institution:Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan 430060, China.
Abstract:OBJECTIVE: To investigate the effect of Radix Paeoniae Rubra (RPR) on the expression of heme oxygenase (HO-1) and induced nitric oxide synthase (iNOS) in endotoxin-induced acute lung injury in rats and its protective mechanism. METHODS: Forty Wistar rats were divided randomly into 5 groups with 8 rats in each group: saline control group (NS group), lipopolysaccharide group (LPS group), RPR-treatment group, RPR-prevention group and Hemin group. The effect of RPR on protein content, the ratio of neutrophiles in bronchoalveolar lavage fluid, malondialdehyde (MDA) content in the lung and the activity of serum NO were observed. Arterial blood was drawn for blood-gas analysis. The expression of HO-1 and iNOS in lung tissues was detected by immunohistochemistry and morphometry computer image analysis. The histological changes of the lung were observed under light microscope. RESULTS: Compared with that in NS group, the expression of HO-1 and iNOS was markedly increased in LPS group (P<0.01). In RPR-treatment, RPR-prevention, and Hemin groups, the expression of iNOS was significantly lower, while the expression of HO-1 was higher than that in LPS group (P<0.05). The protein content, the ratio of neutrophiles in bronchoalveolar lavage fluid, the content of MDA and the activity of serum NO in LPS group were significantly higher than those in NS group (P<0.01). There was a significant decrease in the level of arterial bicarbonate and partial pressure of oxygen in the LPS group (P<0.01); these parameters of lung injury however, were significantly lower in RPR-treatment, RPR-prevention, and Hemin groups than LPS group (P<0.05 or P<0.01). The pathologic changes of lung tissues were substantially attenuated in RPR-treatment, RPR-prevention, and Hemin groups than LPS group. CONCLUSIONS: The high expression of HO-1 reflects an important protective function of the body during lipopolysaccharide-induced acute lung injury. The protective effect of RPR on lipopolysaccharide-induced acute lung injury is related to the inhibition of iNOS expression and the induction of HO-1 expression.
Keywords:Acute lung injury  Lipopolysaccharide  Heme oxygenase  Inducible nitric oxide synthase
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号