Abstract: | Changes in potential between the pial and cut surfaces of rat olfactory cortex slices evoked by N-methyl-d-aspartate (NMDA), quisqualate, kainate,l-glutamate andl-aspartate and also by γ-aminobutyric acid (GABA) have been monitored using extracellular electrodes. All agonists produced a pial-negative potential response when superfused onto the pial surface, GABA,l-aspartate andl-glutamate being less potent than the others. Repeated applications of NMDA, but not of the other agonists, led to a progressive reduction in response to approximately 30% of the initial depolarization. The responses to NMDA (100 μM) were selectively abolished by(±)2-amino-5-phosphonopentanoic acid (APP; 100 μM) while depolarizations evoked byl-glutamate andl-aspartate (both at 10 mM) were only antagonized by21 ± 2 (n = 12) and36 ± 3 (n = 12) percent respectively (means ± S.E.M.). γ-d-Glutamylglycine (γ-DGG; 1 mM) and(±)cis-2,3-piperidine dicarboxylate (cis-PDA; 2 and 5 mM), in addition to antagonizing responses to NMDA, also partially blocked quisqualate- and kainate-evoked depolarizations. When a mixture of APP (100 μM), γ-DGG (1 mM) and cis-PDA (5 mM) was applied to preparations, although NMDA receptors were completely blocked and responses to both quisqualate and kainate antagonized by approximately 80%,l-glutamate andl-aspartate evoked depolarizations were only reduced by51 ± 7 (n = 4) and 49 ± 4 (n = 4) percent respectively (means ± S.E.M.). The results are discussed in terms of the contributions made by NMDA, quisqualate and kainate receptors to the composite responses evoked byl-aspartate andl-glutamate. |