首页 | 本学科首页   官方微博 | 高级检索  
     


Synaptic strength between motoneurons and terminals of the dorsolateral funiculus is regulated by GABA receptors in the turtle spinal cord
Authors:Delgado-Lezama Rodolfo  Aguilar Justo  Cueva-Rolón Rafael
Affiliation:Departamento de Fisiología, Biofísica y Neurociencias, del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07000-México D. F., México. rdelgado@fisio.cinvestav.mx
Abstract:The role of GABAA and GABAB receptors in modulation of excitatory synaptic transmission between motoneurons and terminals from dorsolateral funiculus (DLF) was studied in in vitro spinal cord slices of adult turtles. Muscimol--a GABAA receptor agonist--depressed the monosynaptic excitatory postsynaptic potential (EPSP) induced by stimulation of the DLF and shortened its duration. The input resistance and the membrane time constant also were strongly reduced. The input membrane resistance, the amplitude, and the half-width of the EPSP were reduced at the same rate in the presence of muscimol. Bicuculline--a GABAA receptor antagonist--increased the EPSPs amplitude and the input membrane resistance. The EPSP amplitude ratio elicited by a paired-pulse protocol did not change significantly. Our results suggest that muscimol acts mainly by activation of postsynaptic GABAA receptors located on the motoneuron and the synaptic strength on motoneurons may be modulated by tonic activation of postsynaptic GABAA receptors. Baclofen--a GABAB receptor agonist--also depressed DLF-motoneuron synaptic transmission. However, it did not affect the falling phase of the EPSPs or the motoneuron membrane time constant but induced a small decrement in input resistance. In the presence of baclofen, the amplitude ratio produced by a paired-pulse protocol increased significantly. This suggests that baclofen decreased the synaptic strength by inhibition of neurotransmitter release from the DLF terminals via activation of presynaptic GABAB receptors.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号