首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction between vestibulo-spinal and corticospinal systems: a combined caloric and transcranial magnetic stimulation study
Authors:Guzman-Lopez J  Buisson Y  Strutton P H  Bronstein A M
Affiliation:(1) Neuro-Otology Unit, Imperial College London, Charing Cross Hospital, London, W6 8RF, UK;(2) The Nick Davey Laboratory, Human Performance Group, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, W6 8RF, UK;
Abstract:We investigated the interaction between vestibular and corticospinal stimuli in 8 healthy volunteers. Vestibular stimulation was induced with unilateral ear caloric irrigation (30°C) with subjects supine. Single transcranial magnetic stimulation (TMS) pulses were delivered (double-cone coil, intensities 60–75% maximal output) every 10–20 s during vestibular activation and during baseline. Bilateral surface electromyography (EMG) from splenius capitis, sternocleidomastoid (SCM), obliquus externus abdominis, vastus lateralis, biceps femoris (BF), tibialis anterior and peroneus longus was obtained. During whole-body maximal rotatory voluntary isometric contraction (MRVC), only SCM and BF displayed EMG activation/inhibition patterns indicating axial rotatory action. TMS-induced motor evoked potentials (MEPs) after caloric irrigation revealed that only SCM showed consistent vestibular-mediated excitation/inhibition responses, i.e. an increase in MEP area contralateral to the irrigation and a decrease in MEP area ipsilaterally (+12.7 and −6.3% of the MRVC, respectively). A putative head turn induced by this SCM activity pattern would be in the same direction of the slow-phase eye movement. EMG in the 100 ms preceding TMS showed muscle tone values of approximately 10% of MRVC. After caloric irrigation, these values increased by ca. 2% for all muscles bilaterally and hence cannot explain the direction-specific SCM MEP changes. Thus, SCM MEPs show caloric-induced amplitude modulation indicating that SCM is under both horizontal semicircular canal and corticospinal control. This vestibular modulation of corticospinal SCM control likely occurs at cortical levels. The direction of the MEP modulation indicates a directional coupling between vestibularly induced head and eye movements.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号