Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid |
| |
Authors: | Berry Colm B Hayes Derek Murphy Andrew Wiessner Michael Rauen Thomas McBean Gethin J |
| |
Affiliation: | Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland. |
| |
Abstract: | At present, the ability of polyunsaturated fatty acids (PUFAs) to regulate individual glutamate transporter subtypes is poorly understood and very little information exists on the mechanism(s) by which PUFAs achieve their effects on the transport process. Here we investigate the effect of cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) on the activity of the mammalian glutamate transporter subtypes, GLT1, GLAST and EAAC1 individually expressed in human embryonic kidney (HEK) cells. Exposure of cells to 100 muM DHA increased the rate of d-[(3)H]aspartate uptake by over 72% of control in HEK(GLT1) cells, and by 45% of control in HEK(EAAC1) cells. In contrast, exposure of HEK(GLAST) cells to 200 muM DHA resulted in almost 40% inhibition of d-[(3)H]aspartate transport. Removal of extracellular calcium increased the inhibitory potential of DHA in HEK(GLAST) cells. In contrast, in the absence of extracellular calcium, the stimulatory effect of DHA on d-[(3)H]aspartate uptake in HEK(GLT1) and HEK(EAAC1) cells was abolished, and significant inhibition of the transport process by DHA was observed. Inhibition of CaM kinase II or PKC had no effect on the ability of DHA to inhibit transport into HEK(GLAST) cells but abolished the stimulatory effect of DHA on d-[(3)H]aspartate transport into HEK(GLT1) and HEK(EAAC1) cells. Inhibition of PKA had no effect on the modulation of d-[(3)H]aspartate transport by DHA in any of the cell lines. We conclude that DHA differentially modulates the GLT1, GLAST and EAAC1 glutamate transporter subtypes via different mechanisms. In the case of GLT1 and EAAC1, DHA appears to stimulate d-[(3)H]aspartate uptake via a mechanism requiring extracellular calcium and involving CaM kinase II and PKC, but not PKA. In contrast, the inhibitory effect of DHA on GLAST does not require extracellular calcium and does not involve CaM kinase II, PKC or PKA. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|