首页 | 本学科首页   官方微博 | 高级检索  
     


Control of feeding movements in the freshwater snail Planorbis corneus
Authors:Yu. I. Arshavsky  T. G. Deliagina  G. N. Orlovsky  Yu. V. Panchin
Affiliation:Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow.
Abstract:Isolated buccal ganglia of Planorbis corneus are capable of generating a feeding rhythm. In the present work, "rhythmic" neurons of different groups (see Arshavsky et al. 1988a) have been extracted, by means of an intracellular microelectrode, from the buccal ganglia. (1) After extraction, efferent neurons of groups 3, 5, 7, 9 and most group 4 neurons generated repeated spikes at a frequency controlled by a polarizing current. Any periodic oscillations, similar to those during feeding rhythm generation, were absent in these isolated neurons. It is concluded, therefore, that these neurons are "followers", that is, their rhythmic activity before extraction is determined by synaptic inputs from other neurons of the ganglia. (2) Isolated interneurons of groups 1 and 2 generated slow periodic oscillations similar to those observed in these neurons before their extraction. Subgroup 1e neurons generated smoothly growing depolarization accompanied by increasing spike activity; this depolarization was periodically interrupted by abrupt hyperpolarization, after which a new cycle started. Subgroup 1d neurons periodically generated short series of spikes. Group 2 neurons periodically generated a rectangular wave of depolarization with spike-like oscillations on its top. These results suggest that feeding rhythm generation in Planorbis is based on the endogenous rhythmic activity of group 1 and 2 neurons. (3) A pulse of hyperpolarizing current injected into an isolated neuron of subgroup 1e stopped the growth of depolarization in the neuron and reinitiated the process. This property as well as the character of the synaptic interactions of the interneurons (group 1 neurons excite those of group 2, while those of group 2 inhibit group 1 neurons; Arshavsky et al. 1988b) determine the alternating activity of groups 1 and 2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号