首页 | 本学科首页   官方微博 | 高级检索  
检索        


Umbilical cord and bone marrow mesenchymal stem cell seeding on macroporous calcium phosphate for bone regeneration in rat cranial defects
Authors:Wenchuan Chen  Jun Liu  Navid Manuchehrabadi  Michael D Weir  Zhimin Zhu  Hockin HK Xu
Institution:1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China;2. Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA;3. Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA;4. Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;5. University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
Abstract:Human umbilical cord mesenchymal stem cells (hUCMSCs) are inexhaustible and can be harvested at a low cost without an invasive procedure. However, there has been no report on comparing hUCMSCs with human bone marrow MSCs (hBMSCs) for bone regeneration in vivo. The aim of this study was to investigate hUCMSC and hBMSC seeding on macroporous calcium phosphate cement (CPC), and to compare their bone regeneration in critical-sized cranial defects in rats. Cell attachment, osteogenic differentiation and mineral synthesis on RGD-modified macroporous CPC were investigated in vitro. Scaffolds with cells were implanted in 8-mm defects of athymic rats. Bone regeneration was investigated via micro-CT and histological analysis at 4, 12, and 24 weeks. Three groups were tested: CPC with hUCMSCs, CPC with hBMSCs, and CPC control without cells. Percentage of live cells and cell density on CPC in vitro were similarly good for hUCMSCs and hBMSCs. Both cells had high osteogenic expressions of alkaline phosphatase, osteocalcin, collagen I, and Runx2. Bone mineral density and trabecular thickness in hUCMSC and hBMSC groups in vivo were greater than those of CPC control group. New bone amount for hUCMSC-CPC and hBMSC-CPC constructs was increased by 57% and 88%, respectively, while blood vessel density was increased by 15% and 20%, than CPC control group at 24 weeks. hUCMSC-CPC and hBMSC-CPC groups generally had statistically similar bone mineral density, new bone amount and vessel density. In conclusion, hUCMSCs seeded on CPC were shown to match the bone regeneration efficacy of hBMSCs in vivo for the first time. Both hUCMSC-CPC and hBMSC-CPC constructs generated much more new bone and blood vessels than CPC without cells. Macroporous RGD-grafted CPC with stem cell seeding is promising for craniofacial and orthopedic repairs.
Keywords:Calcium phosphate cement  Stem cells  RGD  Bone regeneration  Athymic rats  Critical-sized cranial defect
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号