Abstract: | The effects of LSD (d-lysergic acid diethylamide) on rat facial motoneurons were compared to those of 5-hydroxytryptamine (5-HT) in brain slices by means of current clamp and single-electrode voltage-clamp recordings. As previously reported, 5-HT, in part by decreasing a resting potassium conductance, produced a reversible depolarization (~5 mV), an increase in input resistance, and an enhancement in electrical excitability. LSD also produced an increase in electrical excitability, although with a much slower onset and longer duration. However, in contrast to 5-HT, LSD produced only a slight depolarization (1-2 mV). Moreover, in the presence of LSD the depolarizing effect of 5-HT was markedly attenuated. The 5-HT2/5-HT1c agonist 1-(2,5-dimethoxy-4-io-dophenyl)-2-aminopropane (DOI) produced effects intermediate between LSD and 5-HT. The LSD-induced increase in electrical excitability was completely reversed by spiperone, a 5-HT2/5-HT1A antagonist, and by ritanserin, a 5-HT2/5-HT1c antagonist; the effects of 5-HT were also reduced by these 2 antagonists, but complete blockade did not occur at the concentrations and durations tested. Surprisingly, LSD was found to enhance the hyperpolarization-activated nonspecific cation current Ih to a greater extent than did 5-HT; this enhancement was blocked by both spiperone and ritanserin. These results indicate that, despite having low efficacy relative to 5-HT in decreasing resting potassium conductance, LSD has high efficacy in enhancing the Ih current in rat facial motoneurons; possible mechanisms for this difference are discussed. © 1993 Wiley-Liss, Inc. |