Multiphase radon generation and transport in porous materials |
| |
Authors: | V C Rogers K K Nielson |
| |
Affiliation: | Rogers and Associates Engineering Corporation, Salt Lake City, UT 84110-0330. |
| |
Abstract: | Radon generation and transport in porous materials involve solid, liquid, and gas phases in the processes of emanation, diffusion, advection, absorption, and adsorption. Oversimplifications, such as representing moist soil systems by air-phase emanation and transport models, cause theoretical inconsistencies and biases in resulting calculations. Detailed Rn rate balance equations for solid, liquid, and gas phases were analyzed and combined using phase equilibrium constants to derive a single diffusive-advective rate balance equation in the traditional form. The emanation, diffusion, and permeability coefficients in the new equation have expanded definitions and interpretations to include Rn phase transfer. Radon adsorption was characterized by an exponential moisture dependence, and diffusion and permeability constants utilized previous moisture relationships. Correct boundary and interface conditions were defined, and the unified theoretical approach was applied to field data from a diffusion-dominated system and to laboratory data from an advection-dominated system. Measured 222Rn fluxes and concentrations validated the modeled values within the measurement variability in both applications. |
| |
Keywords: | |
|
|