Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemic heart failure |
| |
Authors: | Jayasankar Vasant Woo Y Joseph Pirolli Timothy J Bish Lawrence T Berry Mark F Burdick Jeffrey Gardner Timothy J Sweeney H Lee |
| |
Affiliation: | Department of Cardiothoracic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. |
| |
Abstract: | BACKGROUND: Heart failure following myocardial infarction (MI) is a significant cause of morbidity and mortality and remains a difficult therapeutic challenge. Hepatocyte growth factor (HGF) is a potent angiogenic and anti-apoptotic protein whose receptor is upregulated following MI. This study was designed to investigate the ability of HGF to prevent heart failure in a rat model of experimental MI. METHODS: The rats underwent direct intramyocardial injection with replication-deficient adenovirus encoding HGF (n = 7) or null virus as control (n = 7) 3 weeks following ligation of the left anterior descending coronary artery. Analysis of the following was performed 3 weeks after injection: cardiac function by pressure-volume conductance catheter measurements; LV wall thickness; angiogenesis by Von Willebrand's factor staining; and apoptosis by the TUNEL assay. The expression levels of HGF and the anti-apoptotic factor Bcl-2 were analyzed by Western blot. RESULTS: Adeno-HGF-treated animals had greater preservation of maximum LV pressure (HGF 77 +/- 3 vs. control 64 +/- 5 mmHg, p < 0.05), maximum dP/dt (3024 +/- 266 vs. 1907 +/- 360 mmHg/sec, p < 0.05), maximum dV/dt (133 +/- 20 vs. 84 +/- 6 muL/sec, p < 0.05), and LV border zone wall thickness (1.98 +/- 0.06 vs. 1.53 +/- 0.07 mm, p < 0.005). Angiogenesis was enhanced (151 +/- 10.0 vs. 90 +/- 4.5 endothelial cells/hpf, p < 0.005) and apoptosis was reduced (3.9 +/- 0.3 vs. 8.2 +/- 0.5%, p < 0.005). Increased expression of HGF and Bcl-2 protein was observed in the Adeno-HGF-treated group. CONCLUSIONS: Overexpression of HGF 3 weeks post-MI resulted in enhanced angiogenesis, reduced apoptosis, greater preservation of ventricular geometry, and preservation of cardiac contractile function. This technique may be useful to treat or prevent postinfarction heart failure. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|