首页 | 本学科首页   官方微博 | 高级检索  
检索        


BD™ PuraMatrix™ peptide hydrogel seeded with Schwann cells for peripheral nerve regeneration
Authors:Aleksandra M McGrath  Liudmila N Novikova  Mikael Wiberg
Institution:a Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
b Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
Abstract:This study investigated the effects of a membrane conduit filled with a synthetic matrix BD™ PuraMatrix™ peptide (BD) hydrogel and cultured Schwann cells on regeneration after peripheral nerve injury in adult rats.After sciatic axotomy, a 10 mm gap between the nerve stumps was bridged using ultrafiltration membrane conduits filled with BD hydrogel or BD hydrogel containing Schwann cells. In control experiments, the nerve defect was bridged using either membrane conduits with alginate/fibronectin hydrogel or autologous nerve graft. Axonal regeneration within the conduit was assessed at 3 weeks and regeneration of spinal motoneurons and recovery of muscle weight evaluated at 16 weeks postoperatively.Schwann cells survived in the BD hydrogel both in culture and after transplantation into the nerve defect. Regenerating axons grew significantly longer distances within the conduits filled with BD hydrogel when compared with the alginate/fibronectin hydrogel and alginate/fibronectin with Schwann cells. Addition of Schwann cells to the BD hydrogel considerably increased regeneration distance with axons crossing the injury gap and entering into the distal nerve stump. The conduits with BD hydrogel showed a linear alignment of nerve fibers and Schwann cells.The number of regenerating motoneurons and recovery of the weight of the gastrocnemius muscle was inferior in BD hydrogel and alginate/fibronectin groups compared with nerve grafting. Addition of Schwann cells did not improve regeneration of motoneurons or muscle recovery.The present results suggest that BD hydrogel with Schwann cells could be used within biosynthetic conduits to increase the rate of axonal regeneration across a nerve defect.
Keywords:Peripheral nerve injury  Tissue engineering  Regeneration  Biomaterial  Retrograde labeling  Nerve repair
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号