首页 | 本学科首页   官方微博 | 高级检索  
检索        


UVA-induced cell cycle progression is mediated by a disintegrin and metalloprotease/epidermal growth factor receptor/AKT/Cyclin D1 pathways in keratinocytes
Authors:He Yu-Ying  Council Sarah E  Feng Li  Chignell Colin F
Institution:Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA. yyhe@medicine.bsd.uchicago.edu
Abstract:UVA (315-400 nm), which constitutes approximately 95% of the UV irradiation in natural sunlight, represents a major environmental challenge to the skin and is clearly associated with human skin cancer. Here, we show that a low, nonlethal dose of UVA induces dose-dependent cell cycle progression in human HaCaT keratinocytes. We found that UVA induced cyclin D1 accumulation, whereas siRNA knockdown of cyclin D1 blocked the UVA-induced cell cycle progression, indicating that this process is mediated by cyclin D1. UVA irradiation also induced AKT activation; when cells were incubated with phosphatidylinositol-3-OH kinase/AKT inhibitor or infected with dominant-negative AKT, cyclin D1 up-regulation, cell cycle progression, and proliferation were inhibited, suggesting that AKT activation is required for UVA-induced cell cycle progression. In contrast, extracellular signal-regulated kinase (ERK) was not activated by UVA exposure; incubation with ERK/mitogen-activated protein kinase inhibitor had no effect on UVA-induced cyclin D1 up-regulation and cell cycle progression. Activation of epidermal growth factor receptor (EGFR) was observed after UVA exposure. EGFR kinase inhibitor AG attenuated the UVA-induced AKT/cyclin D1 pathway and cell cycle progression, indicating that EGFR is upstream of AKT/cyclin D1 pathway activation. Furthermore, metalloprotease inhibitor GM6001 blocked UVA-induced cell cycle progression, and siRNA knockdown of a disintegrin and metalloprotease (ADAM)17 had a similar inhibitory effect, demonstrating that ADAM17 mediates the EGFR/AKT/cyclin D1 pathway and cell cycle progression to the S phase induced by UVA radiation. Identification of these signaling pathways in UVA-induced cell proliferation will facilitate the development of efficient and safe chemopreventive and therapeutic strategies for skin cancer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号