首页 | 本学科首页   官方微博 | 高级检索  
     


Antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene.
Authors:Takayoshi Murakami  Naoyuki Tokunaga  Toshihiko Waku  Shinya Gomi  Shunsuke Kagawa  Noriaki Tanaka  Toshiyoshi Fujiwara
Affiliation:Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama University Hospital, Okayama, Japan.
Abstract:PURPOSE: Dendritic cells (DCs) are attractive effectors for cancer immunotherapy because of their potential to function as professional antigen-presenting cells for initiating cellular immune responses. The tumor suppressor gene p53 is pivotal in the regulation of apoptosis, and approximately 50% of human malignancies exhibit mutation and aberrant expression of p53. We investigated the antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene. EXPERIMENTAL DESIGN: We examined whether intratumoral administration of DCs infected with recombinant adenovirus expressing murine wild-type p53 (Ad-mp53) could induce systemic antitumor responses against mutant p53-expressing tumors, highly immunogenic MethA, or weakly immunogenic MCA-207 implanted in syngeneic mice. RESULTS: Accumulation of wild-type p53 protein in bone marrow-derived murine DCs could be successfully achieved by Ad-mp53 infection. Treatment with intratumoral injection of Ad-mp53-transduced DCs caused a marked reduction in the in vivo growth of established MethA and MCA-207 tumors with massive cellular infiltrates. Administration of p53-expressing DCs suppressed the growth of both injected MCA-207 tumors and untreated distant MCA-207 tumors, but not unrelated Lewis lung carcinoma tumors, suggesting the augmentation of systemic immunogenicity against MCA-207 tumor cells. Moreover, intratumoral injection of p53-expressing DCs had a greater antitumor effect than did s.c. immunization. CONCLUSIONS: Our results indicate that intratumoral administration of DCs expressing murine wild-type p53 leads to significant systemic immune responses and potent antitumor effects in mutant p53-expressing murine cancer models. These findings raise the possibility of using this strategy of intratumoral injection of p53-expressing DCs for human cancer treatment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号