Aniline-, phenylhydroxylamine-, nitrosobenzene-, and nitrobenzene-induced hemoglobin thiyl free radical formation in vivo and in vitro |
| |
Authors: | K R Maples P Eyer R P Mason |
| |
Affiliation: | Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709. |
| |
Abstract: | We have employed the ESR spin trapping technique in vivo to detect the formation of the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)/hemoglobin thiyl free radical adduct in the blood of rats following administration of either aniline, phenylhydroxylamine, nitrosobenzene, or nitrobenzene. This DMPO adduct was a six-line, strongly immobilized, radical adduct. Using rat red blood cells, both phenylhydroxylamine and nitrosobenzene were able to induce the formation of the DMPO/glutathiyl free radical adduct and the same DMPO/hemoglobin thiyl free radical adduct was detected in in vivo samples. In experiments using purified rat oxyhemoglobin, a four-line, weakly immobilized, DMPO/hemoglobin thiyl free radical adduct was detected, in addition to the six-line strongly immobilized adduct. When this study was repeated using human red blood cells, we detected only the DMPO/glutathiyl free radical adduct and, when purified human oxyhemoglobin was employed, only the four-line, weakly immobilized, DMPO/hemoglobin thiyl radical adduct could be detected. In a study using reduced glutathione, we found that phenylhydronitroxide free radicals were reduced by glutathione and that glutathione was concomitantly oxidized to its thiyl free radical. We propose that the species responsible for the oxidation of the thiols to yield the thiyl free radicals in vivo and in vitro was the phenylhydronitroxide radical produced from the reaction of phenylhydroxylamine with oxyhemoglobin. |
| |
Keywords: | |
|
|