首页 | 本学科首页   官方微博 | 高级检索  
检索        


Genetic modifiers of EGFR dependence in non-small cell lung cancer
Authors:Tanaz Sharifnia  Victor Rusu  Federica Piccioni  Mukta Bagul  Marcin Imielinski  Andrew D Cherniack  Chandra Sekhar Pedamallu  Bang Wong  Frederick H Wilson  Levi A Garraway  David Altshuler  Todd R Golub  David E Root  Aravind Subramanian  Matthew Meyerson
Institution:aBroad Institute of Harvard and MIT, Cambridge, MA, 02142;;Departments of bPathology and;dGenetics and Medicine, Harvard Medical School, Boston, MA, 02115;;cDepartment of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, 02115; and;eDepartment of Molecular Biology and Diabetes Unit, Massachusetts General Hospital, Boston, MA, 02114
Abstract:Lung adenocarcinomas harboring activating mutations in the epidermal growth factor receptor (EGFR) represent a common molecular subset of non-small cell lung cancer (NSCLC) cases. EGFR mutations predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs) and thus represent a dependency in NSCLCs harboring these alterations, but the genetic basis of EGFR dependence is not fully understood. Here, we applied an unbiased, ORF-based screen to identify genetic modifiers of EGFR dependence in EGFR-mutant NSCLC cells. This approach identified 18 kinase and kinase-related genes whose overexpression can substitute for EGFR in EGFR-dependent PC9 cells, and these genes include seven of nine Src family kinase genes, FGFR1, FGFR2, ITK, NTRK1, NTRK2, MOS, MST1R, and RAF1. A subset of these genes can complement loss of EGFR activity across multiple EGFR-dependent models. Unbiased gene-expression profiling of cells overexpressing EGFR bypass genes, together with targeted validation studies, reveals EGFR-independent activation of the MEK-ERK and phosphoinositide 3-kinase (PI3K)-AKT pathways. Combined inhibition of PI3K-mTOR and MEK restores EGFR dependence in cells expressing each of the 18 EGFR bypass genes. Together, these data uncover a broad spectrum of kinases capable of overcoming dependence on EGFR and underscore their convergence on the PI3K-AKT and MEK-ERK signaling axes in sustaining EGFR-independent survival.The term “oncogene addiction” has been used to describe the phenomenon whereby tumor cells exhibit singular reliance on an oncogene or oncogenic pathway for their survival, despite the accumulation of multiple genetic lesions (1). In non-small cell lung cancer (NSCLC), this principle is perhaps best exemplified with the finding that epidermal growth factor receptor (EGFR) mutations predict response to EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, and thus represent a dependency in the subset of tumors harboring these alterations (26). However, though EGFR-mutant NSCLCs typically respond dramatically to EGFR TKIs, clinical responses are not universal, even within this genetically defined cohort, with the rate of objective response estimated to be ∼71% (5, 6). Furthermore, the overwhelming majority of patients who initially respond to EGFR inhibitors ultimately develop resistance to therapy (7). A deeper understanding of the genetic underpinnings of EGFR addiction, and how EGFR-mutant cells can overcome reliance on EGFR, may improve clinical outcomes.Here, we have applied an unbiased screening approach to identify genetic modifiers of EGFR dependence in NSCLC. Mounting evidence supports the existence of several genetic modifiers of EGFR dependence in EGFR-mutant NSCLC, which can reduce the degree to which these tumors rely on EGFR and thereby contribute to EGFR TKI resistance (8). Examples include amplification of the MET receptor tyrosine kinase (RTK) (9), activation of the NF-κB pathway (8), amplification of the HER2 (ERBB2) RTK (10), amplification of the CRKL gene (11), and activation of the AXL kinase (12). Notably, MET bypass can be reciprocally achieved via EGFR activation in MET-dependent cells (13), and analogous examples of reciprocal kinase switching have been reported in other kinase-driven cancer models (14, 15). These and other findings suggest that compensatory kinase switching may be a more general way in which oncogene-dependent cancers overcome reliance on their primary driver kinase (14, 16), but the full-range of kinases capable of mediating EGFR bypass has not been systematically studied.Recent advances in large-scale functional genetic libraries have made it possible to query a wide range of genetic perturbations for their ability to modulate specific cellular phenotypes in mammalian systems (17, 18). Using the model of EGFR-mutant, erlotinib-sensitive NSCLC cells, we have performed a systematic ORF-based screen to identify kinase and kinase-related genes whose overexpression can complement loss of EGFR activity in an EGFR-dependent context. Our findings indicate broad potential for EGFR substitution in the setting of EGFR dependence, with compensatory mechanisms commonly conferring EGFR-independent activation of the PI3K-AKT and MEK-ERK signaling pathways. Importantly, this approach has recovered known mechanisms of erlotinib resistance as well as identified novel mediators of EGFR bypass in EGFR-mutant NSCLC. These data support the idea that the EGFR-dependent state can be redundantly driven by diverse genetic inputs that commonly converge on shared downstream signaling nodes.
Keywords:epidermal growth factor receptor  non-small cell lung cancer  ORF
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号