首页 | 本学科首页   官方微博 | 高级检索  
检索        


Sulphoxidation of ethyl methyl sulphide, 4-chlorophenyl methyl sulphide and diphenyl sulphide by purified pig liver flavin-containing monooxygenase
Authors:Nnane I P  Damani L A
Institution:Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N. Broad Street, Philadelphia, PA 19140, USA. ivo.nname@temple.edu
Abstract:1. The biotransformation of ethyl methyl sulphide (EMS), 4-chlorophenyl methyl sulphide (CPMS) and diphenyl sulphide (DPS) to their corresponding sulphoxides by purified flavin-containing monooxygenase (FMO) is described. 2. Purified pig liver flavin-containing monooxygenase catalysed the sulphoxidation of EMS, CPMS and DPS to their corresponding sulphoxides and the reactions followed single enzyme Michelis-Menten kinetics. 3. The apparent K(m) and V(max) for the sulphoxidation of EMS were 1.38+/-0.05 mM and 78.74+/-3.9 nmoles mg(-1) protein min(-1), respectively. The apparent K(m) and V(max) for the sulphoxidation of CPMS were 0.185+/-0.03 mM and 103+/-5.0 nmoles mg(-1) protein min(-1), respectively. The apparent K(m) and V(max) for the sulphoxidation of DPS were 0.068+/-0.002 mM and 49.26+/-2.05 nmoles mg(-1) protein min(-1), respectively. 4. A significant reduction of the sulphoxidation of these simple sulphides was observed with addition of 1-naphthylthiourea in the incubation medium. On the other hand, incorporation of catalase and superoxide dismutase into the incubation media produced no appreciable inhibition of the observed sulphoxidation of the sulphides. 5. These results suggest that FMO is responsible, at least in part, for the sulphoxidation of nucleophilic sulphides as well as for the oxidation of sulphur atoms that reside within or adjacent to aromatic systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号