首页 | 本学科首页   官方微博 | 高级检索  
     


The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery
Authors:Susan A. Shorter  Alexander S. Gollings  Monique A. M. Gorringe-Pattrick  J. Emma Coakley  Paul D. R. Dyer
Affiliation:Intracellular Delivery Solutions Laboratory, Department of Life and Sports Science, Faculty of Engineering and Science, University of Greenwich at Medway, Kent, UK
Abstract:Introduction: The potential of gene replacement therapy has been underscored by the market authorization of alipogene tiparvovec (Glybera) and GSK2696273 (Strimvelis) in the EU and recombinant adenovirus-p53 (Gendicine) in China. Common to these systems is the use of attenuated viruses for ‘drug’ delivery. Whilst viral delivery systems are being developed for siRNA, their application to antisense delivery remains problematic. Non-viral delivery remains experimental, with some notable successes. However, stability and the ‘PEG dilemma’, balancing toxicity and limited (often liver-tropic) pharmacokinetics/oharmacodynamics, with the membrane destabilizing activity, necessary for nucleocytosolic access and transfection remain a problem.

Areas covered: Here we review the use of attenuated protein toxins as a delivery vehicle for nucleic acids, their relationship to the PEG dilemma, and their biological properties with specific reference to their intracellular trafficking.

Expert opinion: The possibility of using attenuated toxins as antisense and siRNA delivery systems has been demonstrated in vitro. Systems based upon attenuated anthrax toxin have been shown to have high activity (equivalent to nucleofection) and low toxicity whilst not requiring cationic ‘helpers’ or condensing agents, divorcing these systems from the problems associated with the PEG dilemma. It remains to be seen whether these systems can operate safely, efficiently and reproducibly, in vivo or in the clinic.

Keywords:Antisense  drug delivery  Endocytosis  gene therapy  siRNA  toxin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号