首页 | 本学科首页   官方微博 | 高级检索  
检索        


Effects of glucose tolerance on the changes provoked by glucose ingestion in microvascular function
Authors:A Natali  S Baldi  F Vittone  E Muscelli  A Casolaro  C Morgantini  C Palombo  E Ferrannini
Institution:(1) Department of Internal Medicine, University of Pisa, Via Roma, 67, Pisa, 56100, Italy
Abstract:Aims/hypothesis Hyperglycaemia and hyperinsulinaemia have opposite effects on endothelium-dependent vasodilatation in microcirculation, but the net effect elicited by glucose ingestion and the separate influence of glucose tolerance are unknown. Methods In participants with normal glucose tolerance (NGT), impaired glucose tolerance (IGT) or diabetic glucose tolerance, multiple plasma markers of both oxidative stress and endothelial activation, and forearm vascular responses (plethysmography) to intra-arterial acetylcholine (ACh) and sodium nitroprusside (SNP) infusions were measured before and after glucose ingestion. In another IGT group, we evaluated the time-course of the skin vascular responses (laser Doppler) to ACh and SNP (by iontophoresis) 1, 2 and 3 h into the OGTT; the plasma glucose profile was then reproduced by means of a variable intravenous glucose infusion and the vascular measurements repeated. Results Following oral glucose, plasma antioxidants were reduced by 5% to 10% (p < 0.01) in all patient groups. The response to acetylcholine was not affected by glucose ingestion in any group, while the response to SNP was attenuated, particularly in the IGT group. The ACh:SNP ratio was slightly improved therefore in all groups, even in diabetic participants, in whom it was impaired basally. A time-dependent improvement in ACh:SNP ratio was also observed in skin microcirculation following oral glucose; this improvement was blunted when matched hyperglycaemia was coupled with lower hyperinsulinaemia (intravenous glucose). Conclusions/interpretation Regardless of glucose tolerance, oral glucose does not impair endothelium-dependent vasodilatation either in resistance arteries or in the microcirculation, despite causing increased oxidative stress; the endogenous insulin response is probably responsible for countering any inhibitory effect on vascular function.
Keywords:Endothelium  Glucose intolerance  Hyperglycaemia  Hyperinsulinaemia  Microcirculation  Nitric oxide  Oxidative stress  Resistance arteries  Type 2 diabetes  Vascular function
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号