首页 | 本学科首页   官方微博 | 高级检索  
检索        


Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray.
Authors:H Li  K A Khor  P Cheang
Institution:School of Mechanical and Production Engineering, Nanyang Technological University, Singapore, Singapore.
Abstract:Hydroxyapatite (HA) coatings with titania addition were produced by the high velocity oxy-fuel (HVOF) spray process. Mechanical properties of the as-sprayed coatings in terms of adhesive strength, shear strength and fracture toughness were investigated to reveal the effect of the titania reinforcement on HA. Qualitative phase analysis with X-ray diffraction (XRD) showed that mutual chemical reaction between TiO2 and HA, that formed CaTiO3 occurred during coating formation. Differential scanning calorimetry (DSC) analysis of the starting powders showed that the mutual chemical reaction temperature was approximately 1410 degrees C and the existence of TiO2 can effectively inhibit the decomposition of HA at elevated temperatures. The positive influence of TiO2 addition on the shear strength was revealed. The incorporation of 10 vol% TiO2 significantly improved the Young's modulus of HA coatings from 24.82 (+/- 2.44) GPa to 43.23 (+/- 3.20) GPa. It decreased to 38.51 (+/- 3.65) GPa as the amount of TiO2 increased to 20 vol%. However, the addition of TiO2 has a negative bias on the adhesive strength of HA coatings especially when the content of TiO2 reached 20 vol%. This is attributed to the weak chemical bonding and brittle phases existing at the splats' interface that resulted from mutual chemical reactions. The fracture toughness exhibited values of 0.48 (+/- 0.08) MPa m0.5, 0.60 (+/- 0.07) MPa m0.5 and 0.67 (+/- 0.06) MPa m0.5 for the HA coating, 10 vol% TiO2 blended HA coating and 20 vol% TiO2 blended HA coating respectively. The addition of TiO2 in HA coating with the amount of less than 20 vol% is suggested for satisfactory toughening effect in HVOF HA coating.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号