首页 | 本学科首页   官方微博 | 高级检索  
     


Clozapine-Induced Locomotor Suppression is Mediated by 5-HT2A Receptors in the Forebrain
Authors:Caitlin E McOmish  Alena Lira  James B Hanks  Jay A Gingrich
Affiliation:1.Department of Psychiatry, Columbia University Medical Center, New York, NY, USA;2.Florey Neurosciences Institute, Parkville, Melbourne VIC, Australia;3.University of Melbourne, Parkville, Melbourne VIC, Australia;4.Mount Sinai School of Medicine, New York, NY, USA;5.Sackler Institute, New York State Psychiatric Institute, New York, NY, USA
Abstract:The need for safer, more effective therapeutics for the treatment of schizophrenia is widely acknowledged. To optimally target novel pharmacotherapies, in addition to establishing the mechanisms responsible for the beneficial effects of antipsychotics, the pathways underlying the most severe side effects must also be elucidated. Here we investigate the role of serotonin 2A (5-HT2A), serotonin 2C (5-HT2C), and dopamine 2 receptors (D2) in mediating adverse effects associated with canonical first- and second-generation antipsychotic drugs in mice. Wild-type (WT) and 5-HT2A knockout (KO) mice treated with haloperidol, clozapine, and risperidone were assessed for locomotor activity and catalepsy. WT mice showed a marked reduction in locomotor activity following acute administration of haloperidol and high-dose risperidone, which was most likely secondary to the severe catalepsy caused by these compounds. Clozapine also dramatically reduced locomotor activity, but in the absence of catalepsy. Interestingly, 5-HT2A KO mice were cataleptic following haloperidol and risperidone, but did not respond to clozapine''s locomotor-suppressing effects. Restoration of 5-HT2A expression to cortical glutamatergic neurons re-instated the locomotor-suppressing effects of clozapine in the open field. In sum, we confirm that haloperidol and risperidone caused catalepsy in rodents, driven by strong antagonism of D2. We also demonstrate that clozapine decreases locomotor activity in a 5-HT2A-dependent manner, in the absence of catalepsy. Moreover, we show that it is the cortical population of 5-HT2A that mediate the locomotor-suppressing effects of clozapine.
Keywords:5-HT2A receptor   clozapine   schizophrenia   side effects   antipsychotics   sedation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号