首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking
Authors:Haddad Jeffrey M  van Emmerik Richard E A  Whittlesey Saunders N  Hamill Joseph
Affiliation:

aMotor Control Laboratories, Department of Exercise Science, University of Massachusetts, 110 Totman building, Amherst, MA 01003, USA

bBiomechanics Laboratories, Department of Exercise Science, University of Massachusetts, Amherst, MA, USA

Abstract:The purpose of this study was to examine both the intralimb (within a limb) and interlimb (between the right and left limbs) adaptations that occur in response to a unilaterally applied leg load as subjects walked at their preferred walking speed. It was hypothesized that this adaptation would alter interlimb coordination while intralimb coordination remained invariant. Subjects (n = 12) were required to walk on a treadmill at preferred walking speed. Bilateral 3-D kinematic data were collected while a load placed on the leg was increased. Gait adaptations to leg-loading were assessed through changes in coordination patterns between specific limb couplings. Continuous relative phase (CRP) was used to evaluate changes in limb coordination under each experimental load condition compared to a no load baseline condition. Both changes in magnitude of CRP (root-mean-square (RMS) analysis) as well as temporal changes in CRP across the stride cycle (cross-correlation) were assessed. Cross-Correlation values changed with load for all interlimb couplings assessed suggesting alterations in interlimb coordination across the stride cycle. CRP cross-correlation values were close to 1.0 in all the intralimb couplings examined, showing a relative invariance in intralimb coordination. Coordination changes in RMS were also observed for the interlimb couplings. RMS changes were also observed in the intralimb couplings on the loaded side. It appears that gait adaptations to a unilaterally applied leg load appear both at the intralimb and interlimb level. However, the majority of changes did appear at the interlimb level, where CRP as assessed through both cross-correlation and RMS measures changed. This study supports previous results that suggested a tighter coupling exists at the intralimb level, leaving the majority of gait adaptations to occur at the interlimb level. The observed adaptation in differences between interlimb and intralimb coordination may provide insight into gait adaptations in pathological gait.
Keywords:Coordination   Locomotion   Relative phase   Limb loading and symmetry
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号