首页 | 本学科首页   官方微博 | 高级检索  
     


Small-conductance chloride channels induced by cAMP,Ca2+, and hypotonicity in HT29 cells: ion selectivity,additivity and stilbene sensitivity
Authors:R. Kubitz  R. Warth  N. Allert  K. Kunzelmann  R. Greger
Affiliation:(1) Physiologisches Institut der Albert-Ludwigs-Universität Freiburg, Hermann Herder Strasse 7, W-7800 Freiburg, Germany
Abstract:Previous studies in HT29 cells utilizing the cellattached nystatin (CAN) method [Greger R, Kunzelmann K (1991) Pflügers Arch 419:209–211] have revealed that the Cl channels induced by cAMP or by increasing cytosolic Ca2+, e.g. by addition of ATP, and by hypotonic cell swelling share in common their conductance, which was so small in our studies [Kunzelmann et al. (1992) Pflügers Arch (in press)] that we could not resolve it at the single-channel level. This prompted the question whether these Cl conductances can be distinguished in terms of their ion selectivity and sensitivity towards inhibitors. Whether these pathways are additive or not was also examined. The present study utilized the whole-cell patch-clamp and the CAN methods. A total of 160 patches were studied. In whole-cell patches 8-(4-chlorophenylthio)-cAMP (cAMP, 0.1±1 mmol/l) induced a significant depolarization by 5 mV and a twofold increase in conductance (G) from 6.2±1.5 nS to 11.7±3.2 nS (n=15). Total replacement of Cl by Br and I in cAMP-treated cells hyperpolarized the membrane voltage (V) significantly from –35±2.8 to –39±3.4 and –45± 3.3 mV respectively, but had no detectable effect on G, which was 11.9±3.3 nS in the case of Br and 11.8± 3.3 nS in the case of I. Hence, the permselectivity of the cAMP pathway was I>Br>Cl, but the conductances for these anions were all indistinguishable. For ATP at 10–100 mgrmol/l the depolarization was least with I: from –41±1.1 to –36±2.4mV, intermediate for Br to –25±1.6 mV, and largest for Cl to –20±1.8 mV (n=18). ATP increased G from 3.4±0.3 nS to 12.9±2.8 nS (Cl), to 12.9±2.8 nS (Br) and to 12.9±2.7 (I) (n=18). These data indicate that the ATP-induced anion channel has a permeability sequence of I>Br>Cl. The conductance for all three anions was identical. Hypotonic cell swelling by 160 mosmol/l induced a depolarization that was smallest for I, from –42±4 to –32±2.1 mV, intermediate for Br: –29±1.8mV, and similar for Cl: –28±2 mV (n=20). G was increased from 2.8±0.8 nS to 15±2.5nS in the case of Cl, to 15±2.5 nS for Br and to 16±2.6 nS for I (n=20). Therefore, all three pathways are indistinguishable with respect to their anion selectivity. All three pathways are insensitive towards low concentrations of 4-nitro-2-(3-phenylpropylamino)benzoate, but are all blocked by 4,4prime-diisothiocyanatostilbene-2,2prime-disulphonic acid, with a half-maximal inhibition around 0.6 mmol/l. Finally, the possible additivity was examined in three permutations. ATP (0.1 mmol/l) alone (n=14) had a slightly but not significantly larger effect on conductance than the combination of ATP and cAMP (1 mmol/l, n=14) and the combination of ATP and hypotonicity (193 mosmol/l, n=13). Similarly, the effects of hypotonicity and cAMP (n=11) were not additive. These data indicate that all three pathways share common properties. Hence, it is suggested that all three pathways converge on the same small Cl channel.Supported by DFG Gr 480/10 and BMFT 01 GA 8816
Keywords:HT29  Cl  secretion  Small-conductance  Cl   channels  cAMP  ATP  CFTR  Patch clamp  Nystatin method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号