首页 | 本学科首页   官方微博 | 高级检索  
     


Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare
Authors:Chapman C A  Lacaille J C
Affiliation:Centre de Recherche en Sciences Neurologiques et Département de Physiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.
Abstract:The ionic conductances underlying membrane potential oscillations of hippocampal CA1 interneurons located near the border between stratum lacunosum-moleculare and stratum radiatum (LM) were investigated using whole cell current-clamp recordings in rat hippocampal slices. At 22 degrees C, when LM cells were depolarized near spike threshold by current injection, 91% of cells displayed 2-5 Hz oscillations in membrane potential, which caused rhythmic firing. At 32 degrees C, mean oscillation frequency increased to 7.1 Hz. Oscillations were voltage dependent and were eliminated by hyperpolarizing cells 6-10 mV below spike threshold. Blockade of ionotropic glutamate and GABA synaptic transmission did not affect oscillations, indicating that they were not synaptically driven. Oscillations were eliminated by tetrodotoxin, suggesting that Na+ currents generate the depolarizing phase of oscillations. Oscillations were not affected by blocking Ca2+ currents with Cd2+ or Ca2+-free ACSF or by blocking the hyperpolarization-activated current (Ih) with Cs+. Both Ba2+ and a low concentration of 4-aminopyridine (4-AP) reduced oscillations but TEA did not. Theta-frequency oscillations were much less common in interneurons located in stratum oriens. Intrinsic membrane potential oscillations in LM cells of the CA1 region thus involve an interplay between inward Na+ currents and outward K+ currents sensitive to Ba2+ and 4-AP. These oscillations may participate in rhythmic inhibition and synchronization of pyramidal neurons during theta activity in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《Journal of neurophysiology》浏览原始摘要信息
点击此处可从《Journal of neurophysiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号