首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of Heterobifunctional Thiol‐poly(lactic acid)‐b‐poly(ethylene glycol)‐hydroxyl for Nanoparticle Drug Delivery Applications
Authors:Robert F. Pagels  Nathalie M. Pinkerton  Adam W. York  Robert K. Prud'homme
Abstract:Biocompatible, amphiphilic block copolymers, such as poly(lactic acid)‐b‐poly(ethylene glycol) (PLA‐b‐PEG), that can be conjugated to targeting ligands, therapeutics, and imaging agents are required for the development of polymeric nanoparticle drug delivery systems. Synthesis of targetable, heterobifunctional X‐PLA‐b‐PEG‐Y has required the use of heterobifunctional PEG, which involves specialty equipment to synthesize and is expensive to purchase. Herein, a new method for the synthesis of bifunctional HS‐PLA‐b‐PEG‐OH is described. The approach takes advantage of polymer solution properties to improve a critical purification step, and uses inexpensive and readily available PEG‐diol as a starting material. In the method demonstrated here, the ring‐opening polymerization of PLA is initiated by both ends of a cleavable bifunctional initiator. PEG is conjugated to each PLA end, resulting in a high molecular weight intermediate which is simple to purify from the excess PEG, with recoveries that are nearly three times higher than when a monofunctional initiator is used. Following purification, the triblock copolymer is cleaved to produce the final HS‐PLA‐b‐PEG‐OH product, in which both polymer ends are reactive. Moreover, the polymers successfully stabilize nanoparticles produced by Flash NanoPrecipitation. Importantly, the synthesis method can be adopted by non‐polymer experts.
Keywords:block copolymers  conjugated polymers  functionalization of polymers  nanoparticles  ring‐opening polymerization  separation techniques  synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号