首页 | 本学科首页   官方微博 | 高级检索  
     


Controlled Synthesis of “Reverse Pluronic”‐Type Block Copolyethers with High Molar Masses for the Preparation of Hydrogels with Improved Mechanical Properties
Authors:Felix Markus  Johanna R. Bruckner  Stefan Naumann
Abstract:Hydrogels based on Pluronics (EOn/2‐POm‐EOn/2, EO = ethylene oxide, PO = propylene oxide) have been frequently investigated, yet key limitations still remain, including a propensity for quick erosion and insufficient mechanical robustness. This issue can be alleviated by creating “reverse Pluronics” (POn/2‐EOm‐POn/2), which is proposed to enable the formation of physical cross‐links via a micellar network. Until recently, however, efforts in this direction were aggravated by synthetic difficulties, specifically prohibiting the realization of poly(propylene oxide) (PPO)‐moieties with a high DP. In this study, an organocatalytic polymerization method is employed to synthesize “reverse Pluronics,” resulting in highly defined polymers (ÐM ≤ 1.02–1.07, Mn up to 35 000 g mol?1) with exceptionally long PPO blocks. The higher molar mass and the reverse constitution of the polyether combine to enable the generation of thermoresponsive hydrogels with a storage modulus that is increased tenfold relative to reference samples. Gelation temperature and maximum storage modulus (Gmax) are readily influenced by the choice of the polyether (down to 5 wt%). The improved mechanical properties are accompanied by an increased resistance toward erosion in water. Isotactic enrichment is presented as an additional tuning parameter for hydrogel properties.
Keywords:block copolymers  hydrogels  polyethers  ring‐opening polymerization  self‐assembly
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号