首页 | 本学科首页   官方微博 | 高级检索  
     


Functional changes of the coronary microvasculature with aging regarding glucose tolerance,energy metabolism,and oxidative stress
Authors:Evangelia Mourmoura  Karine Couturier  Isabelle Hininger-Favier  Corinne Malpuech-Brugère  Kasra Azarnoush  Melanie Richardson  Luc Demaison
Abstract:This study was aimed at characterizing the functional progression of the endothelial (ECs) and smooth muscle cells (SMCs) of the coronary microvasculature between youth and old age, as well as at determining the mechanisms of the observed changes on the basis of the glucose tolerance, mitochondrial energy metabolism, and oxidative stress. Male rats were divided into four age groups (3, 6, 11, and 17 months for the young (Y), young adult (YA), middle-aged (MA), and old (O) animals). The cardiac mechanical function, endothelial-dependent dilatation (EDD) and endothelial-independent dilatation (EID) of the coronary microvasculature were determined in a Langendorff preparation. The mitochondrial respiration and H2O2 production were evaluated and completed by ex vivo measurements of oxidative stress. EDD progressively decreased from youth to old age. The relaxation properties of the SMCs, although high in the Y rats, decreased drastically between youth and young adulthood and stabilized thereafter, paralleling the reduction of mitochondrial oxidative phosphorylation. The ECs dilatation activity, low at youth, was stimulated in YA animals and returned to their initial level at middle age. That parameter followed faithfully the progression of the amount of active cardiac endothelial nitric oxide synthase and whole body glucose intolerance. In conclusion, the progressive decrease in EDD occurring with aging is due to different functional behaviors of the ECs and SMCs, which appear to be associated with the systemic glucose intolerance and cardiac energy metabolism.
Keywords:Endothelial-dependent dilatation   Langendorff preparation   Phosphorylation   Smooth muscle cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号