首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of recombinant adeno-associated viral vectors for human beta-globin gene transfer and transgene expression
Authors:Maina Njeri  Zhong Li  Li Xiaomiao  Zhao Weihong  Han Zongchao  Bischof Daniela  Aslanidi George  Zolotukhin Sergei  Weigel-Van Aken Kirsten A  Rivers Angela E  Slayton William B  Yoder Mervin C  Srivastava Arun
Affiliation:Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
Abstract:Therapeutic levels of expression of the beta-globin gene have been difficult to achieve with conventional retroviral vectors without the inclusion of DNase I-hypersensitive site (HS2, HS3, and HS4) enhancer elements. We generated recombinant adeno-associated viral (AAV) vectors carrying an antisickling human beta-globin gene under the control of either the beta-globin gene promoter/enhancer or the erythroid cell-specific human parvovirus B19 promoter at map unit 6 (B19p6) without any enhancer, and tested their efficacy in a human erythroid cell line (K-562) and in primary murine hematopoietic progenitor cells (c-kit(+)lin()). We report here that (1) self-complementary AAV serotype 2 (scAAV2)-beta-globin vectors containing only the HS2 enhancer are more efficient than single-stranded AAV (ssAAV2)-beta-globin vectors containing the HS2+HS3+HS4 enhancers; (2) scAAV2-beta-globin vectors recombine with scAAV2-HS2+HS3+HS4 vectors after dual-vector transduction, leading to transgene expression; (3) scAAV2-beta-globin as well as scAAV1-beta-globin vectors containing the B19p6 promoter without the HS2 enhancer element are more efficient than their counterparts containing the HS2 enhancer/beta-globin promoter; and (4) scAAV2-B19p6-beta-globin vectors in K-562 cells, and scAAV1-B19p6-beta-globin vectors in murine c-kit(+)lin() cells, yield efficient expression of the beta-globin protein. Thus, the combined use of scAAV vectors and the parvovirus B19 promoter may lead to expression of therapeutic levels the beta-globin gene in human erythroid cells, which has implications in the use of these vectors in gene therapy of beta-thalassemia and sickle cell disease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号