首页 | 本学科首页   官方微博 | 高级检索  
     


An oxygen-bonded c8-deoxyguanosine nucleoside adduct of pentachlorophenol by peroxidase activation: evidence for ambident c8 reactivity by phenoxyl radicals
Authors:Dai Jian  Wright Marcus W  Manderville Richard A
Affiliation:Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109-7486, USA.
Abstract:The ability of the carcinogenic environmental toxin pentachlorophenol (PCP, 1) to react with DNA bases has been assessed using MS and NMR. Treatment of PCP (100 microM) with horseradish peroxidase (HRP/H(2)O(2)) or myeloperoxidase (MPx/H(2)O(2), from human leukocytes) in the presence of excess deoxyguanosine (dG, 2 mM) led to the isolation and identification of the oxygen-bonded C8-dG nucleoside adduct 4. The reaction was absolutely specific for dG; no detectable adduct(s) was observed from HRP/H(2)O(2) and PCP in the presence of deoxyadenosine, deoxycytidine, or thymidine. Formation of 4 was also specific for peroxidase activation that is known to oxidize PCP into the phenoxyl radical. Treatment of PCP/dG with rat liver microsomes (RLM) failed to generate 4; instead, an adduct derived from the benzoquinone electrophile tetrachloro-1,4-benzoquinone (chloranil) was observed in the extracted ion chromatogram from the RLM/NADPH-treated PCP/dG sample. The adduct 4 is the first structurally characterized O-bonded phenolic DNA nucleoside adduct and highlights the ambident electrophilicity of phenoxyl radicals (O- vs C-) in reaction at C8 of dG, as we have previously demonstrated that the para-chlorophenolic toxin, ochratoxin A (2), reacts at C8 of dG to give the C-bonded adduct 3 via the intermediacy of the OTA phenoxyl radical. Given that PCP is known to induce DNA adduct formation in vivo and human exposure has been linked to incidences of leukemia, the adduct 4 could play a key role in PCP-mediated carcinogenesis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号