首页 | 本学科首页   官方微博 | 高级检索  
检索        


A search for improved technique factors in paediatric fluoroscopy
Authors:Tapiovaara M J  Sandborg M  Dance D R
Institution:STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland.
Abstract:A Monte Carlo computational model of a fluoroscopic imaging chain was used for deriving optimal technique factors for paediatric fluoroscopy. The optimal technique was defined as the one that minimizes the absorbed dose (or dose rate) in the patient with a constraint of constant image quality. Image quality was assessed for the task of detecting a detail in the image of a patient-simulating phantom, and was expressed in terms of the ideal observer's signal-to-noise ratio (SNR) for static images and in terms of the accumulating rate of the square of SNR for dynamic imaging. The entrance air kerma (or air kerma rate) and the mean absorbed dose (or dose rate) in the phantom quantified radiation detriment. The calculations were made for homogeneous phantoms simulating newborn, 3-, 10- and 15-year-old patients, barium and iodine contrast material details, several x-ray spectra, and for imaging with or without an antiscatter grid. The image receptor was modelled as a CsI x-ray image intensifier (XRII). For the task of detecting low- or moderate-contrast iodine details, the optimal spectrum can be obtained by using an x-ray tube potential near 50 kV and filtering the x-ray beam heavily. The optimal tube potential is near 60 kV for low- or moderate-contrast barium details, and 80-100 kV for high-contrast details. The low-potential spectra above require a high tube load, but this should be acceptable in paediatric fluoroscopy. A reasonable choice of filtration is the use of an additional 0.25 mm Cu, or a suitable K-edge filter. No increase in the optimal tube potential was found as phantom thickness increased. With the constraint of constant low-contrast detail detectability, the mean absorbed doses obtained with the above spectra are approximately 50% lower than those obtained with the reference conditions of 70 kV and 2.7 mm Al filter. For the smallest patient and x-ray field size, not using a grid was slightly more dose-efficient than using a grid, but when the patient size and field size were increased a fibre interspaced grid resulted in lower doses than imaging without a grid. For a 15-year-old patient the mean absorbed doses were up to 40% lower with this grid than without the grid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号