首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for functionally distinct pili expressed by Neisseria meningitidis.
Authors:R W Pinner  P A Spellman  D S Stephens
Affiliation:Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
Abstract:In order to investigate possible functional consequences of phase and antigenic variation of meningococci, the attachment of 15 strains of Neisseria meningitidis to human erythrocytes was studied by a nitrocellulose hemadsorption assay. This assay allows the study of individual meningococcal colonies with respect to erythrocyte attachment. Of the 15 strains studied, 7 demonstrated binding of human erythrocytes (HA+). Among these seven strains, the percentage of colonies that were HA+ ranged from 0.2 to 97%. Meningococcal colonies that did not produce pilin (the major structural subunit of pili) did not demonstrate erythrocyte binding (HA-). The HA+ colony phenotype was correlated with assembly of pilin into pili and expression of pili on the meningococcal surface. However, only some piliated colonies bound human erythrocytes. This could not be explained by differences between piliated HA+ and HA- colonies in the amount of pilin produced or by differences in number of pili expressed per diplococcus. Pili of five of the meningococcal strains with HA+ colonies were antigenically related to gonococcal pili (class I meningococcal pili), but HA+ colonies were also seen in two meningococcal strains expressing class II meningococcal pili. Changes from HA+ to HA- and from HA- to HA+, in the presence of continuing pilin production and pilus assembly, occurred at frequencies of up to 10(-2)/CFU per generation. Such frequencies resemble those of phase and antigenic variation described previously for Neisseria species pilin. These studies indicate that phase variation influences the ability of meningococci to attach to human cells and suggest that meningococci may express functionally different pili.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号