首页 | 本学科首页   官方微博 | 高级检索  
     


Is Irregular Regression of Corpora Lutea in Climacteric Women Caused by Age-Induced Alterations in the “Tissue Control System”?
Authors:Antoní  n Bukovský  ,Michael R. Caudle,Jeffrey A. Keenan,Jay Wimalasena,Nirmala B. Upadhyaya,Stuart E. Van Meter
Abstract:PROBLEM: We have recently observed that the regression of corpora lutea (CL) in women during the reproductive period of life is accompanied by a diminution of Thy-1 differentiation protein release from vascular pericytes and an accumulation of T lymphocytes and activated macrophages among both degenerating granulosa lutein cells (GLC) and theca lutein cells. These data suggest that the immune system and other stromal factors, representing components of the “tissue control system,” may play a role in regression of the CL. We investigated degenerating CL from climacteric women to address the possibility that the decline of immune functions with advancing age may result in incomplete regression of luteal tissue. This could contribute to the altered hormonal profiles and abnormal uterine bleeding that frequently occur during the climacteric. METHOD: Immunoperoxidase staining and image analysis were used to localize Thy-1 differentiation protein of vascular pericytes, cytokeratin staining of GLC, neural cell adhesion molecule expression by theca lutein cells, CD15 of neutrophils, CD4, CD14, CD68, and leukocyte common antigens of macrophages, and CD3 and CD8 determinants of T lymphocytes. We also investigated the expression of luteinizing hormone receptor (LH receptor) and mitogen activated protein kinases (MAP kinases) in luteal cells. Samples of regressing luteal tissue were obtained during the follicular phase from perimenopausal women (age 45–50) who exhibited prolonged or irregular cycles. For comparison, luteal tissues from women with regular cycles (age 29–45) and CL of pregnancy were also investigated. RESULTS: Corpora lutea of the climacteric women exhibited irregular regression of luteal tissue characterized by a lack of cytoplasmic vacuolization and nuclear pyknosis in GLC, and by a persistence of theca lutein cells exhibiting hyperplasia and adjacent theca externa layers. This was accompanied by a continuing release of Thy-1 differentiation protein from vascular pericytes. Persisting GLC lacked surface expression of macrophage markers (CD4, CD14, CD68 and leukocyte common antigen) as well as nuclear granules exhibiting CD15 of neutrophils, detected in regularly regressing GLC. In addition, such persisting GLC showed weak or no LH receptor expression, and retained the expression of cytokeratin. They also exhibited enhanced staining for MAP kinases. Strong cytoplasmic MAP kinase expression with occasional nuclear translocation was also detected in persisting theca lutein cells, indicating high metabolic activity of these cells. T lymphocytes, although occasionally present in luteal stroma within luteal convolutions, did not invade among persisting GLC and were virtually absent from layers of theca externa and theca lutein cells. CONCLUSIONS: These data indicate that the regressing CL in climacteric women may exhibit persistence of luteal cells, perhaps because of age-induced alterations of the immune system and other local stromal homeostatic mechanisms involved in the elimination of luteal cells. Persisting GLC and/or theca lutein cells may exhibit abnormal hormonal secretion that contributes to the alteration of target tissues, such as the endometrium, resulting in abnormal uterine bleeding, hyperplasia, and neoplasia.
Keywords:Climacteric  corpus luteum regression  human ovary  image analysis  immunohistochemistry  luteinizing hormone receptor  lymphocyates  macrophages  mitogen activated protein kinase  neutrophils  pericytes  tissue control system  Thy-1 differentiation protein
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号