首页 | 本学科首页   官方微博 | 高级检索  
检索        


Functional expression of cell surface cannabinoid CB(1) receptors on presynaptic inhibitory terminals in cultured rat hippocampal neurons
Authors:Irving A J  Coutts A A  Harvey J  Rae M G  Mackie K  Bewick G S  Pertwee R G
Institution:Department of Biomedical Sciences, University of Aberdeen, AB25 2ZD, Aberdeen, UK. a.j.irving@abdn.ac.uk
Abstract:At present, little is known about the mechanisms by which cannabinoids exert their effects on the central nervous system. In this study, fluorescence imaging and electrophysiological techniques were used to investigate the functional relationship between cell surface cannabinoid type 1 (CB(1)) receptors and GABAergic synaptic transmission in cultured hippocampal neurons. CB(1) receptors were labelled on living neurons using a polyclonal antibody directed against the N-terminal 77 amino acid residues of the rat cloned CB(1) receptor. Highly punctate CB(1) receptor labelling was observed on fine axons and at axonal growth cones, with little somatic labelling. The majority of these sites were associated with synaptic terminals, identified either with immunohistochemical markers or by using the styryl dye FM1-43 to label synaptic vesicles that had undergone active turnover. Dual labelling of neurons for CB(1) receptors with either the inhibitory neurotransmitter GABA or its synthesising enzyme glutamate decarboxylase, demonstrated a strong correspondence. The immunocytochemical data was supported by functional studies using whole-cell patch-clamp recordings of miniature inhibitory postsynaptic currents (mIPSCs). The cannabinoid agonist WIN55,212-2 (100nM) markedly inhibited (by 77+/-6.3%) the frequency of pharmacologically-isolated GABAergic mIPSCs. The effects of WIN55,212-2 were blocked in the presence of the selective CB(1) receptor antagonist SR141716A (100nM).In conclusion, the present data show that cell surface CB(1) receptors are expressed at presynaptic GABAergic terminals, where their activation inhibits GABA release. Their presence on growth cones could indicate a role in the targeting of inhibitory connections during development.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号